File size: 2,983 Bytes
90d8e80
 
 
 
 
 
6aaf5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr

from PIL import Image
import numpy as np
import os

title = """<h1 id="title">App Detection</h1>"""

models = ["nickmuchi/yolos-small-finetuned-masks","nickmuchi/yolos-base-finetuned-masks"]
urls = ["https://api.time.com/wp-content/uploads/2020/03/hong-kong-mask-admiralty.jpg","https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQ7wiGZhgAFuIpwFJzbpv8kUMM_Q3WaAWYf5NpSJduxvHQ7V2WnqZ0wMWS6cK5gvlfPGxc&usqp=CAU"]

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)

with demo:
    
        gr.Markdown(title)
        options = gr.Dropdown(choices=models,label='Detection',show_label=True)
        slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
        
        with gr.Tabs():
            with gr.TabItem('Image URL'):
                with gr.Row():
                    with gr.Column():
                        url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                        original_image = gr.Image(shape=(750,750))
                    with gr.Column():
                        img_output_from_url = gr.Image(shape=(750,750))
                    
                with gr.Row():
                    example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
                
                url_but = gr.Button('Detect')
         
            with gr.TabItem('Image Upload'):
                with gr.Row():
                    img_input = gr.Image(type='pil',shape=(750,750))
                    img_output_from_upload= gr.Image(shape=(750,750))
                    
                with gr.Row(): 
                    example_images = gr.Dataset(components=[img_input],
                                                samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))])
                                                       
                    
                img_but = gr.Button('Detect')
                
            with gr.TabItem('WebCam'):
                with gr.Row():
                    web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
                    img_output_from_webcam= gr.Image(shape=(750,750))
    
                cam_but = gr.Button('Detect')
                
        url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
        img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
        cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
        example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
        example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input,original_image])
        
    
demo.launch(debug=True,enable_queue=True)