Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,757 Bytes
c7008b3 be47882 8c32d82 783ed02 eb15b47 783ed02 8c32d82 eb15b47 220cc7a 8c32d82 eb15b47 5a3a162 5d6e17c eb15b47 783ed02 8c32d82 783ed02 eb15b47 c7008b3 eb15b47 1dec77f acc34b2 c1d70a2 220cc7a 5d6e17c 783ed02 f0c46e6 5d6e17c 783ed02 c7008b3 783ed02 783445f f0c46e6 8482fb3 783ed02 c7008b3 f0c46e6 783ed02 be47882 bdf9a64 be47882 783ed02 bdf9a64 be47882 783ed02 bdf9a64 783ed02 be47882 bdf9a64 be47882 acc34b2 be47882 bdf9a64 acc34b2 783ed02 bdf9a64 be47882 783ed02 bdf9a64 be47882 5d6e17c c7008b3 bdf9a64 acc34b2 bdf9a64 6285fcd 783ed02 bdf9a64 783ed02 bdf9a64 acc34b2 bdf9a64 c182ab9 acc34b2 783ed02 bdf9a64 6285fcd 8c32d82 783ed02 bdf9a64 c182ab9 783ed02 acc34b2 b74f1fc c182ab9 783ed02 acc34b2 c7008b3 8c32d82 6285fcd 5a3a162 5d6e17c 8c32d82 bdf9a64 783ed02 be47882 8482fb3 783ed02 be47882 783ed02 be47882 1dec77f 5a3a162 1dec77f bdf9a64 1dec77f e9f3084 1dec77f 5a3a162 8482fb3 1dec77f bdf9a64 acc34b2 be47882 bdf9a64 783ed02 be47882 8c32d82 6285fcd 5a3a162 5d6e17c 6285fcd bdf9a64 783ed02 eb15b47 5d6e17c c7008b3 783ed02 be47882 783ed02 be47882 1dec77f 5a3a162 1dec77f bdf9a64 1dec77f e9f3084 1dec77f 5a3a162 8482fb3 1dec77f bdf9a64 be47882 bdf9a64 be47882 8c32d82 6285fcd 5a3a162 5d6e17c 6285fcd bdf9a64 6285fcd c7008b3 eb15b47 1dec77f 5a3a162 1dec77f bdf9a64 6285fcd e9f3084 acc34b2 eb15b47 5a3a162 8482fb3 eb15b47 bdf9a64 c182ab9 bdf9a64 acc34b2 eb15b47 bdf9a64 5d6e17c be47882 783ed02 be47882 eb15b47 be47882 783ed02 be47882 783ed02 bdf9a64 783ed02 220cc7a 783ed02 bdf9a64 acc34b2 bdf9a64 a625cc2 b74f1fc 783ed02 bdf9a64 a625cc2 acc34b2 783ed02 bdf9a64 a625cc2 783ed02 bdf9a64 a625cc2 b74f1fc 783ed02 6285fcd acc34b2 783ed02 bdf9a64 a625cc2 6285fcd 783ed02 bdf9a64 a625cc2 b74f1fc 783ed02 6285fcd 5a3a162 bdf9a64 67e28db 783ed02 bdf9a64 a625cc2 acc34b2 783ed02 be47882 bdf9a64 be47882 bdf9a64 6285fcd 783ed02 bdf9a64 6285fcd 783ed02 acc34b2 6285fcd acc34b2 6285fcd 783ed02 be47882 acc34b2 be47882 8482fb3 be47882 8c32d82 783ed02 8482fb3 be47882 8482fb3 c7008b3 8482fb3 783ed02 8482fb3 783ed02 c182ab9 be47882 783ed02 be47882 783ed02 8482fb3 783ed02 8482fb3 783ed02 8482fb3 783ed02 8482fb3 783ed02 8482fb3 c7008b3 8482fb3 bdf9a64 783ed02 bdf9a64 acc34b2 783ed02 c7008b3 783ed02 be47882 acc34b2 c182ab9 c7008b3 bdf9a64 acc34b2 bdf9a64 acc34b2 6285fcd c7008b3 c182ab9 8c32d82 be47882 6285fcd 5d6e17c c7008b3 783ed02 bdf9a64 acc34b2 c7008b3 bdf9a64 c7008b3 acc34b2 c182ab9 c7008b3 67e28db 783ed02 be47882 bdf9a64 be47882 bdf9a64 be47882 783ed02 be47882 bdf9a64 be47882 783ed02 be47882 bdf9a64 be47882 783ed02 be47882 bdf9a64 eb15b47 783ed02 eb15b47 8482fb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
# AI Persona Simulator - Final Optimized Version
import gradio as gr
import torch
from duckduckgo_search import DDGS
import re
import time
from spaces import GPU
import logging
from datetime import datetime
# Configure logging for suspicious activity
logging.basicConfig(
filename='persona_attempts.log',
level=logging.INFO,
format='%(asctime)s - %(message)s'
)
# --- Constants and Configuration ---
MODEL_ID = "google/gemma-3-1b-it"
MAX_GPU_MEMORY = "60GiB"
# --- GPU-Isolated Functions ---
@GPU(memory=60)
def load_model():
"""Load the Gemma 3 1B model without quantization for full precision."""
from transformers import pipeline
print(f"Attempting to load model: {MODEL_ID} without quantization")
try:
pipe = pipeline(
"text-generation",
model=MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
model_kwargs={"use_cache": True}
)
print(f"Model {MODEL_ID} loaded successfully on device: {pipe.device}")
return pipe
except Exception as e:
print(f"FATAL Error loading model '{MODEL_ID}': {e}")
raise e
@GPU(memory=60)
def validate_request(name, context):
"""LLM-based request validation using isolated GPU function"""
from transformers import pipeline # Ensure pipeline is available in GPU process
validation_prompt = [
{"role": "system", "content": """You are an ethical AI content moderator. Evaluate if this request is appropriate.
CRITERIA:
1. NO minors (under 18) or underage references
2. NO vulnerable populations
3. NO manipulation/exploitation attempts
4. NO illegal/harmful scenarios
5. NO inappropriate relationships
Respond with ONLY the word "TRUE" if acceptable, or "FALSE" if not acceptable. Do not include any explanation, formatting, or additional text."""},
{"role": "user", "content": f"Character Name: {name}\nContext: {context}"}
]
try:
pipe = load_model()
tokenizer = pipe.tokenizer
text = tokenizer.apply_chat_template(
validation_prompt,
add_generation_prompt=True,
tokenize=False
)
with torch.amp.autocast('cuda', dtype=torch.bfloat16):
outputs = pipe(
text,
max_new_tokens=50,
do_sample=True,
temperature=0.1, # Keep temperature low for deterministic response
pad_token_id=pipe.tokenizer.eos_token_id
)
result = parse_llm_output(outputs, validation_prompt)
# Extract just TRUE or FALSE from any potential markdown formatting
cleaned_result = re.sub(r'[^A-Za-z]', '', result).upper()
# Check if result contains TRUE or FALSE
if "TRUE" in cleaned_result:
return True
elif "FALSE" in cleaned_result:
return False
else:
# If we can't determine clearly, default to FALSE for safety
print(f"Validation returned unclear result: '{result}', defaulting to FALSE")
return False
except Exception as e:
print(f"Validation error: {e}")
return False
# --- Web Search with Safety ---
def search_person(name, context=""):
"""Search for information about a person using DuckDuckGo."""
print(f"Searching for: {name} with context: {context}")
results = []
search_terms = []
# Basic pattern detection (backup to LLM check)
if re.search(r'\d+[st|nd|rd|th]?[\s\-]?(grade|grader|year old)', f"{name} {context}".lower()):
return [{"body": "Creation of underage personas is prohibited"}]
if context:
search_terms.append(f"{name} {context}")
grade_match = re.search(r'(\d+)(?:st|nd|rd|th)?\s+grade', context.lower())
if grade_match:
grade = grade_match.group(1)
search_terms.append(f"{name} student {grade} grade")
search_terms.extend([f"{name}", f"{name} biography", f"{name} interests", f"{name} personality"])
search_terms = list(dict.fromkeys(search_terms))
print(f"Using search terms: {search_terms}")
try:
with DDGS() as ddgs:
for term in search_terms:
print(f"Searching DDG for: '{term}'")
search_results = list(ddgs.text(term, max_results=2))
results.extend(search_results)
time.sleep(0.2)
except Exception as e:
error_msg = f"Error during DuckDuckGo search: {str(e)}"
print(error_msg)
return error_msg
if not results:
print(f"No search results found for {name}. Creating synthetic profile.")
return create_synthetic_profile(name, context)
print(f"Found {len(results)} potential search results.")
return results
def create_synthetic_profile(name, context):
"""Create a synthetic profile when search returns no results."""
profile = {
"title": f"Synthetic Profile for {name}",
"href": "",
"body": f"{name} is a person described with the context: '{context}'. "
}
if "grade" in context.lower():
grade_match = re.search(r'(\d+)(?:st|nd|rd|th)?\s+grade', context.lower())
if grade_match:
try:
grade = int(grade_match.group(1))
age = 5 + grade
profile["body"] += f"Based on being in {grade}th grade, {name} is likely around {age} years old. "
profile["body"] += f"Typical interests for this age might include friends, hobbies, school subjects, and developing independence. "
except ValueError:
profile["body"] += f"The grade mentioned ('{grade_match.group(1)}') could not be parsed to estimate age. "
profile["body"] += "Since no public information was found, this profile is based solely on the provided context."
return [profile]
def extract_text_from_search_results(search_results):
"""Extract relevant text from search results."""
if isinstance(search_results, str):
return f"Could not extract text due to search error: {search_results}"
combined_text = ""
seen_bodies = set()
count = 0
max_results_to_process = 5
for result in search_results:
if count >= max_results_to_process:
break
if isinstance(result, dict) and 'body' in result and result['body']:
body = result['body'].strip()
if body not in seen_bodies:
combined_text += body + "\n"
seen_bodies.add(body)
count += 1
if not combined_text:
return "No relevant text found in search results."
combined_text = re.sub(r'\s+', ' ', combined_text).strip()
max_length = 2000
return combined_text[:max_length] + "..." if len(combined_text) > max_length else combined_text
# --- Text Processing Functions ---
def parse_llm_output(full_output, input_prompt_list):
"""Attempts to parse only the newly generated text from the LLM output."""
if isinstance(full_output, list) and len(full_output) > 0:
if isinstance(full_output[0], dict) and "generated_text" in full_output[0]:
generated_text = full_output[0]["generated_text"]
else:
return str(full_output)
elif isinstance(full_output, str):
generated_text = full_output
else:
return str(full_output)
last_input_content = ""
if isinstance(input_prompt_list, list) and input_prompt_list:
last_input_content = input_prompt_list[-1].get("content", "")
if last_input_content:
last_occurrence_index = generated_text.rfind(last_input_content)
if last_occurrence_index != -1:
potential_response = generated_text[last_occurrence_index + len(last_input_content):].strip()
if potential_response:
potential_response = re.sub(r'^<\/?s?>', '', potential_response).strip()
potential_response = re.sub(r'^(assistant|ASSISTANT|System|SYSTEM)[:\s]*', '', potential_response).strip()
potential_response = re.sub(r'<end_of_turn>|<start_of_turn>model', '', potential_response).strip()
if potential_response:
return potential_response
cleaned_text = generated_text
if isinstance(input_prompt_list, list) and input_prompt_list:
first_prompt_content = input_prompt_list[0].get("content", "")
if first_prompt_content and cleaned_text.startswith(first_prompt_content):
pass
cleaned_text = re.sub(r'^<\/?s?>', '', cleaned_text).strip()
cleaned_text = re.sub(r'^(assistant|ASSISTANT|System|SYSTEM)[:\s]*', '', cleaned_text).strip()
cleaned_text = re.sub(r'<end_of_turn>|<start_of_turn>model', '', cleaned_text).strip()
if not cleaned_text and generated_text:
print("Warning: Parsing resulted in empty string, returning original generation.")
return re.sub(r'<end_of_turn>|<start_of_turn>model', '', generated_text).strip()
return cleaned_text
# --- LLM Generation Functions ---
@GPU(memory=60)
def generate_enhanced_persona(name, bio_text, context=""):
"""Use the LLM to enhance the persona profile."""
from transformers import pipeline
pipe = load_model()
print(f"Generating enhanced persona for {name}...")
enhancement_prompt = [
{"role": "system", "content": """You are an expert AI character developer. Your task is to synthesize information into a detailed and coherent character profile. Focus on personality, potential interests, speaking style, and mannerisms based ONLY on the provided text. Output ONLY the enhanced character profile description. Do not include conversational introductions, explanations, or markdown formatting like headers."""
},
{"role": "user", "content": f"""Synthesize the following information about '{name}' into a character profile. Context: {context} Information Found:
{bio_text}
Create the profile based *only* on the text above."""}
]
try:
tokenizer = pipe.tokenizer
text = tokenizer.apply_chat_template(
enhancement_prompt,
add_generation_prompt=True,
tokenize=False
)
with torch.amp.autocast('cuda', dtype=torch.bfloat16):
outputs = pipe(
text,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.8,
pad_token_id=pipe.tokenizer.eos_token_id
)
parsed_output = parse_llm_output(outputs, enhancement_prompt)
print("Enhanced persona generated.")
return parsed_output if parsed_output else f"Could not generate profile based on:\n{bio_text}"
except Exception as e:
error_msg = f"Error generating enhanced persona: {str(e)}"
print(error_msg)
return f"Error enhancing profile: {str(e)}\nUsing basic info:\n{bio_text}"
@GPU(memory=60)
def generate_system_prompt_with_llm(name, enhanced_profile, context=""):
"""Generate an optimized system prompt for the persona."""
from transformers import pipeline
pipe = load_model()
print(f"Generating system prompt for {name}...")
fallback_prompt = f"""You are simulating the character '{name}'. Act and respond according to this profile:
{enhanced_profile}
Additional context for the simulation: {context}
---
Maintain this persona consistently. Respond naturally based on the profile. Do not mention that you are an AI or a simulation. If asked about details not in the profile, you can be evasive or state you don't know/remember, consistent with the persona."""
prompt = [
{"role": "system", "content": """You are an expert AI prompt engineer specializing in character simulation. Create a concise system prompt that instructs the LLM to embody the character based on the profile. The prompt must: 1. Define core personality and speaking style. 2. Specify how to handle unknown topics. 3. Prohibit breaking character or mentioning AI nature. Output ONLY the system prompt itself."""
},
{"role": "user", "content": f"""Create a system prompt for an AI to simulate the character '{name}'. Context for simulation: {context} Character Profile:
{enhanced_profile}
Generate the system prompt based *only* on the profile and context provided."""}
]
try:
tokenizer = pipe.tokenizer
text = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
tokenize=False
)
with torch.amp.autocast('cuda', dtype=torch.bfloat16):
outputs = pipe(
text,
max_new_tokens=300,
do_sample=True,
temperature=0.7,
top_p=0.8,
pad_token_id=pipe.tokenizer.eos_token_id
)
parsed_output = parse_llm_output(outputs, prompt)
print("System prompt generated.")
return parsed_output if parsed_output else fallback_prompt
except Exception as e:
error_msg = f"Error generating system prompt: {str(e)}"
print(error_msg)
return fallback_prompt
@GPU(memory=60)
def generate_response(messages):
"""Generate a response using the LLM."""
from transformers import pipeline
pipe = load_model()
print("Generating response...")
if not messages:
return "Error: No message history provided."
try:
tokenizer = pipe.tokenizer
text = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
with torch.amp.autocast('cuda', dtype=torch.bfloat16):
outputs = pipe(
text,
max_new_tokens=512,
do_sample=True,
top_p=0.8,
temperature=0.7,
pad_token_id=pipe.tokenizer.eos_token_id
)
parsed_output = parse_llm_output(outputs, messages)
parsed_output = re.sub(r'<end_of_turn>|<start_of_turn>model', '', parsed_output).strip()
print("Response generated.")
return parsed_output if parsed_output else "..."
except Exception as e:
error_msg = f"Error during response generation: {str(e)}"
print(error_msg)
return f"Sorry, I encountered an error trying to respond."
# --- Persona Chat Class with Safety ---
class PersonaChat:
def __init__(self):
self.system_prompt = "You are a helpful assistant."
self.persona_name = "Assistant"
self.persona_context = ""
self.messages = []
self.enhanced_profile = ""
def set_persona(self, name, context=""):
"""Orchestrates persona creation: validation, search, enhance, generate prompt."""
try:
# First validate the request with LLM
is_valid = validate_request(name, context)
if not is_valid:
warning = "This request has been flagged as inappropriate. We cannot create personas that involve minors, vulnerable individuals, or potentially harmful scenarios."
yield warning, "", "", [{"role": "system", "content": warning}]
return
self.persona_name = name
self.persona_context = context
self.messages = []
self.enhanced_profile = ""
status = f"Searching for information about {name}..."
print(f"set_persona: Yielding search status: {status}")
yield status, "", "", []
search_results = search_person(name, context)
if isinstance(search_results, str) and search_results.startswith("Error"):
error_msg = f"Failed to set persona: {search_results}"
print(f"set_persona: Yielding error: {error_msg}")
yield error_msg, "", "", [{"role": "system", "content": error_msg}]
return
bio_text = extract_text_from_search_results(search_results)
if bio_text.startswith("Could not extract text"):
print(f"set_persona: Yielding bio warning: {bio_text}")
yield f"Warning: {bio_text}", "", "", [{"role": "system", "content": bio_text}]
status = f"Creating enhanced profile for {name}..."
print(f"set_persona: Yielding profile status: {status}")
yield status, "", bio_text, []
self.enhanced_profile = generate_enhanced_persona(name, bio_text, context)
profile_for_prompt = self.enhanced_profile
if self.enhanced_profile.startswith("Error enhancing profile"):
print(f"set_persona: Yielding profile warning: {self.enhanced_profile}")
yield f"Warning: Could not enhance profile. Using basic info.", "", self.enhanced_profile, [{"role": "system", "content": self.enhanced_profile}]
profile_for_prompt = bio_text
status = f"Generating optimal system prompt for {name}..."
print(f"set_persona: Yielding prompt status: {status}")
yield status, self.enhanced_profile, self.enhanced_profile, []
self.system_prompt = generate_system_prompt_with_llm(name, profile_for_prompt, context)
self.system_prompt = re.sub(r'<\|im_tailored\|>|<\|im_start\|>|^assistant\s*', '', self.system_prompt).strip()
self.messages = [{"role": "system", "content": self.system_prompt}]
print(f"set_persona: Final yield with messages (not sent to Chatbot): {self.messages}")
yield f"Persona set to '{name}'. Ready to chat!", self.system_prompt, self.enhanced_profile, []
except Exception as e:
error_msg = f"An unexpected error occurred during persona setup: {str(e)}"
print(f"set_persona: Yielding exception: {error_msg}")
yield error_msg, self.system_prompt, self.enhanced_profile, [{"role": "system", "content": error_msg}]
def chat(self, user_message):
"""Processes a user message and returns the AI's response."""
try:
if not self.messages:
print("Error: Chat called before persona was set.")
return "Please set a persona first using the controls above."
print(f"User message: {user_message}")
self.messages.append({"role": "user", "content": user_message})
response = generate_response(self.messages)
if not response.startswith("Sorry, I encountered an error"):
self.messages.append({"role": "assistant", "content": response})
print(f"Assistant response: {response}")
else:
print(f"Assistant error response: {response}")
return response
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
return f"Sorry, I encountered an error: {str(e)}"
# --- Gradio Interface with Enhanced UI ---
def create_interface():
persona_chat = PersonaChat()
# Mobile-optimized CSS with modern styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background: linear-gradient(to right, #f8f9fa, #e9ecef);
}
.main-container {
max-width: 1200px;
margin: auto;
padding: 20px;
background: white;
border-radius: 15px;
box-shadow: 0 8px 24px rgba(0,0,0,0.08);
}
.header {
background: linear-gradient(135deg, #1e3c72, #2a5298);
color: white;
padding: 25px;
border-radius: 10px 10px 0 0;
margin-bottom: 25px;
text-align: center;
}
.setup-section {
background-color: #f8f9fa;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
margin-bottom: 25px;
}
.chat-section {
background-color: #ffffff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
}
.chat-container {
border: 1px solid #eaeaea;
border-radius: 10px;
height: 450px !important;
overflow-y: auto;
background-color: #ffffff;
padding: 10px;
}
.message-input {
margin-top: 10px;
}
.send-button, .persona-button {
background-color: #1e3c72 !important;
color: white !important;
border-radius: 8px;
padding: 10px 20px;
font-weight: bold;
}
.footer {
text-align: center;
margin-top: 30px;
font-size: 0.9em;
color: #666;
padding: 15px;
border-top: 1px solid #eee;
}
@media (max-width: 768px) {
.chat-container { height: 300px !important; }
.main-container { padding: 10px; }
}
"""
with gr.Blocks(css=css, title="AI Persona Simulator") as interface:
with gr.Row():
with gr.Column():
with gr.Column():
gr.Markdown("# 🤖 AI Persona Simulator")
gr.Markdown("Create and interact with ethical character simulations using advanced AI")
with gr.Column():
gr.Markdown("### Create Your Persona")
gr.Markdown("Enter a name and context for your character")
name_input = gr.Textbox(label="Character Name", placeholder="e.g., Sherlock Holmes, Historical Figure")
context_input = gr.Textbox(label="Character Context", lines=2, placeholder="e.g., Victorian detective living in London, OR Tech entrepreneur focused on AI ethics")
set_persona_button = gr.Button("Create Persona & Start Chat", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("View Generated Details", open=False):
enhanced_profile_display = gr.TextArea(label="Enhanced Profile", lines=10)
system_prompt_display = gr.TextArea(label="System Prompt", lines=10)
with gr.Column():
gr.Markdown("### Chat with Character")
character_name_display = gr.Markdown("*No persona created yet*")
chatbot = gr.Chatbot(
height=450,
show_label=False,
type="messages",
avatar_images=("https://api.dicebear.com/6.x/bottts/svg?seed=user ",
"https://api.dicebear.com/6.x/bottts/svg?seed=bot ")
)
msg_input = gr.Textbox(label="Your message", placeholder="Type your message here and press Enter...")
send_button = gr.Button("Send Message")
gr.Markdown("Powered by Gemma 3 1B • Ethically Designed • Safe & Secure")
def set_persona_flow(name, context):
if not name:
yield "Status: Please enter a character name.", "", "", "*No persona created yet*", []
return
initial_status = f"Creating persona for '{name}'..."
initial_character_display = f"### Preparing to chat with {name}..."
initial_history = []
yield initial_status, "", "", initial_character_display, initial_history
try:
for status_update, prompt_update, profile_update, history_update in persona_chat.set_persona(name, context):
gradio_history = []
for i in range(0, len(history_update), 2):
if i+1 < len(history_update):
user_msg = history_update[i].get("content", "")
bot_msg = history_update[i+1].get("content", "")
gradio_history.append({"role": "user", "content": user_msg})
gradio_history.append({"role": "assistant", "content": bot_msg})
character_display = f"### Preparing chat with {name}..."
if "Ready to chat" in status_update:
character_display = f"### Chatting with {name}"
elif "Error" in status_update:
character_display = f"### Error creating {name}"
yield status_update, prompt_update, profile_update, character_display, gradio_history
time.sleep(0.1)
except Exception as e:
error_msg = f"Failed to set persona (interface error): {str(e)}"
print(f"set_persona_flow: Exception: {error_msg}")
yield error_msg, "", "", f"### Error creating {name}", []
def send_message_flow(message, history):
if not message.strip():
return "", history
if not persona_chat.messages or persona_chat.messages[0]['role'] != 'system':
history.append({"role": "assistant", "content": "Error: Please create a valid persona first."})
return "", history
history.append({"role": "user", "content": message})
response = persona_chat.chat(message)
history.append({"role": "assistant", "content": response})
return "", history
set_persona_button.click(
set_persona_flow,
inputs=[name_input, context_input],
outputs=[status_output, system_prompt_display, enhanced_profile_display, character_name_display, chatbot]
)
send_button.click(
send_message_flow,
inputs=[msg_input, chatbot],
outputs=[msg_input, chatbot]
)
msg_input.submit(
send_message_flow,
inputs=[msg_input, chatbot],
outputs=[msg_input, chatbot]
)
return interface
# --- Main Execution ---
if __name__ == "__main__":
print("Starting secure AI Persona Simulator with LLM-based request validation...")
demo = create_interface()
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
debug=True,
ssr_mode=False
) |