File size: 9,777 Bytes
14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 f9a4c33 14caaf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import os
from PIL import Image, ImageEnhance
import requests
import io
import gc
import json
from typing import Tuple, Optional, Dict, Any
import logging
import numpy as np
import cv2
from dotenv import load_dotenv
# Configuration du logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Chargement des variables d'environnement
load_dotenv()
# Styles artistiques enrichis
ART_STYLES = {
"Ultra Réaliste": {
"prompt_prefix": "ultra realistic photograph, stunning photorealistic quality, unreal engine 5 quality, cinema quality, masterpiece, perfect composition, award winning photography, professional lighting, 8k UHD",
"negative_prompt": "artificial, digital art, illustration, painting, drawing, artistic, cartoon, anime, unreal, fake, low quality, blurry, soft, deformed",
"quality_boost": 1.2
},
"Photoréaliste": {
"prompt_prefix": "hyperrealistic studio photograph, extremely detailed, professional photography, perfect lighting, high-end camera, 8k uhd",
"negative_prompt": "artificial, illustration, painting, animated, cartoon, artistic",
"quality_boost": 1.1
},
"Art Moderne": {
"prompt_prefix": "modern art style, professional design, contemporary aesthetic, trending artwork, perfect composition",
"negative_prompt": "old style, vintage, traditional, amateur, low quality",
"quality_boost": 1.0
},
"Minimaliste": {
"prompt_prefix": "minimalist design, clean composition, elegant simplicity, refined aesthetic",
"negative_prompt": "complex, cluttered, busy, ornate, detailed",
"quality_boost": 1.0
}
}
class ImageGenerator:
def __init__(self):
self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
token = os.getenv('HUGGINGFACE_TOKEN')
if not token:
logger.error("HUGGINGFACE_TOKEN non trouvé!")
self.headers = {"Authorization": f"Bearer {token}"}
logger.info("ImageGenerator initialisé")
def _enhance_image(self, image: Image.Image, params: Dict[str, Any]) -> Image.Image:
"""Amélioration avancée de la qualité d'image"""
try:
# Conversion en CV2 pour traitement avancé
cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Débruitage adaptatif
if params.get("quality", 35) > 40:
cv2_image = cv2.fastNlMeansDenoisingColored(cv2_image, None, 10, 10, 7, 21)
# Amélioration des détails
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
cv2_image = cv2.filter2D(cv2_image, -1, kernel)
# Reconversion en PIL
image = Image.fromarray(cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB))
# Ajustements fins avec PIL
enhancers = [
(ImageEnhance.Sharpness, params.get("detail_level", 7) / 5),
(ImageEnhance.Contrast, params.get("contrast", 5) / 5),
(ImageEnhance.Color, params.get("saturation", 5) / 5)
]
for enhancer_class, factor in enhancers:
if factor != 1.0:
image = enhancer_class(image).enhance(factor)
return image
except Exception as e:
logger.error(f"Erreur traitement image: {str(e)}")
return image
def _build_prompt(self, params: Dict[str, Any]) -> str:
"""Construction optimisée du prompt"""
try:
style_info = ART_STYLES.get(params["style"], ART_STYLES["Art Moderne"])
# Construction du prompt principal
base_prompt = f"{params['subject']}"
if params.get('title'):
base_prompt += f", with text '{params['title']}'"
# Ajout des éléments de style
prompt = f"{base_prompt}, {style_info['prompt_prefix']}"
return prompt
except Exception as e:
logger.error(f"Erreur prompt: {str(e)}")
return params['subject']
def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]:
try:
if 'Bearer None' in self.headers['Authorization']:
return None, "⚠️ Erreur: Token Hugging Face non configuré"
# Optimisation des paramètres
style_info = ART_STYLES.get(params["style"], ART_STYLES["Art Moderne"])
quality_boost = style_info.get("quality_boost", 1.0)
# Préparation de la requête
prompt = self._build_prompt(params)
payload = {
"inputs": prompt,
"parameters": {
"negative_prompt": style_info["negative_prompt"],
"num_inference_steps": min(int(40 * quality_boost), 50),
"guidance_scale": min(8.0 * quality_boost, 12.0),
"width": 1024 if params.get("quality", 35) > 40 else 768,
"height": 1024 if params["orientation"] == "Portrait" else 768
}
}
response = requests.post(
self.API_URL,
headers=self.headers,
json=payload,
timeout=45
)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
# Application des améliorations de qualité
enhanced_image = self._enhance_image(image, params)
return enhanced_image, "✨ Création réussie!"
else:
error_msg = f"⚠️ Erreur API {response.status_code}: {response.text}"
logger.error(error_msg)
return None, error_msg
except Exception as e:
error_msg = f"⚠️ Erreur: {str(e)}"
logger.exception("Erreur génération:")
return None, error_msg
finally:
gc.collect()
def create_interface():
generator = ImageGenerator()
with gr.Blocks(css="style.css") as app:
gr.HTML("""
<div class="welcome">
<h1>🎨 Equity Artisan 3.0</h1>
<p>Assistant de création d'affiches professionnelles</p>
</div>
""")
with gr.Column():
# Contrôles principaux
with gr.Group():
gr.Markdown("### 📐 Format et Style")
with gr.Row():
format_size = gr.Dropdown(
choices=["A4", "A3", "A2", "A1"],
value="A4",
label="Format"
)
orientation = gr.Radio(
choices=["Portrait", "Paysage"],
value="Portrait",
label="Orientation"
)
style = gr.Dropdown(
choices=list(ART_STYLES.keys()),
value="Art Moderne",
label="Style artistique"
)
# Description
with gr.Group():
gr.Markdown("### 📝 Description")
subject = gr.Textbox(
label="Description",
placeholder="Décrivez votre vision...",
lines=3
)
title = gr.Textbox(
label="Titre (optionnel)",
placeholder="Titre à inclure..."
)
# Paramètres avancés
with gr.Group():
gr.Markdown("### ⚙️ Paramètres")
with gr.Row():
quality = gr.Slider(
minimum=30,
maximum=50,
value=35,
label="Qualité"
)
detail_level = gr.Slider(
minimum=1,
maximum=10,
value=7,
step=1,
label="Niveau de Détail"
)
creativity = gr.Slider(
minimum=5,
maximum=15,
value=7.5,
label="Créativité"
)
# Boutons
with gr.Row():
generate_btn = gr.Button("✨ Générer", variant="primary")
clear_btn = gr.Button("🗑️ Effacer")
# Résultat
image_output = gr.Image(label="Résultat")
status = gr.Textbox(label="Status", interactive=False)
def generate(*args):
params = {
"format_size": args[0],
"orientation": args[1],
"style": args[2],
"subject": args[3],
"title": args[4],
"quality": args[5],
"detail_level": args[6],
"creativity": args[7]
}
return generator.generate(params)
generate_btn.click(
generate,
inputs=[format_size, orientation, style, subject, title,
quality, detail_level, creativity],
outputs=[image_output, status]
)
clear_btn.click(
lambda: (None, "🗑️ Image effacée"),
outputs=[image_output, status]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch() |