File size: 23,644 Bytes
0122640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import math
from abc import abstractmethod

import torch as th
import torch.nn as nn
import torch.nn.functional as F

from .fp16_util import convert_module_to_f16, convert_module_to_f32
from .nn import avg_pool_nd, conv_nd, linear, normalization, timestep_embedding, zero_module


class TimestepBlock(nn.Module):
    """

    Any module where forward() takes timestep embeddings as a second argument.

    """

    @abstractmethod
    def forward(self, x, emb):
        """

        Apply the module to `x` given `emb` timestep embeddings.

        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """

    A sequential module that passes timestep embeddings to the children that

    support it as an extra input.

    """

    def forward(self, x, emb, encoder_out=None):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, encoder_out)
            else:
                x = layer(x)
        return x


class Upsample(nn.Module):
    """

    An upsampling layer with an optional convolution.



    :param channels: channels in the inputs and outputs.

    :param use_conv: a bool determining if a convolution is applied.

    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then

                 upsampling occurs in the inner-two dimensions.

    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    """

    A downsampling layer with an optional convolution.



    :param channels: channels in the inputs and outputs.

    :param use_conv: a bool determining if a convolution is applied.

    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then

                 downsampling occurs in the inner-two dimensions.

    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=1)
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """

    A residual block that can optionally change the number of channels.



    :param channels: the number of input channels.

    :param emb_channels: the number of timestep embedding channels.

    :param dropout: the rate of dropout.

    :param out_channels: if specified, the number of out channels.

    :param use_conv: if True and out_channels is specified, use a spatial

        convolution instead of a smaller 1x1 convolution to change the

        channels in the skip connection.

    :param dims: determines if the signal is 1D, 2D, or 3D.

    :param use_checkpoint: if True, use gradient checkpointing on this module.

    :param up: if True, use this block for upsampling.

    :param down: if True, use this block for downsampling.

    """

    def __init__(

        self,

        channels,

        emb_channels,

        dropout,

        out_channels=None,

        use_conv=False,

        use_scale_shift_norm=False,

        dims=2,

        use_checkpoint=False,

        up=False,

        down=False,

    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels, swish=1.0),
            nn.Identity(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
            nn.SiLU() if use_scale_shift_norm else nn.Identity(),
            nn.Dropout(p=dropout),
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """

        Apply the block to a Tensor, conditioned on a timestep embedding.



        :param x: an [N x C x ...] Tensor of features.

        :param emb: an [N x emb_channels] Tensor of timestep embeddings.

        :return: an [N x C x ...] Tensor of outputs.

        """
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class AttentionBlock(nn.Module):
    """

    An attention block that allows spatial positions to attend to each other.



    Originally ported from here, but adapted to the N-d case.

    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.

    """

    def __init__(

        self,

        channels,

        num_heads=1,

        num_head_channels=-1,

        use_checkpoint=False,

        encoder_channels=None,

    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels, swish=0.0)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        self.attention = QKVAttention(self.num_heads)

        if encoder_channels is not None:
            self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x, encoder_out=None):
        b, c, *spatial = x.shape
        qkv = self.qkv(self.norm(x).view(b, c, -1))
        if encoder_out is not None:
            encoder_out = self.encoder_kv(encoder_out)
            h = self.attention(qkv, encoder_out)
        else:
            h = self.attention(qkv)
        h = self.proj_out(h)
        return x + h.reshape(b, c, *spatial)


class QKVAttention(nn.Module):
    """

    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping

    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv, encoder_kv=None):
        """

        Apply QKV attention.



        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.

        :return: an [N x (H * C) x T] tensor after attention.

        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        if encoder_kv is not None:
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = th.cat([ek, k], dim=-1)
            v = th.cat([ev, v], dim=-1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = th.einsum(
            "bct,bcs->bts", q * scale, k * scale
        )  # More stable with f16 than dividing afterwards
        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = th.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)


class UNetModel(nn.Module):
    """

    The full UNet model with attention and timestep embedding.



    :param in_channels: channels in the input Tensor.

    :param model_channels: base channel count for the model.

    :param out_channels: channels in the output Tensor.

    :param num_res_blocks: number of residual blocks per downsample.

    :param attention_resolutions: a collection of downsample rates at which

        attention will take place. May be a set, list, or tuple.

        For example, if this contains 4, then at 4x downsampling, attention

        will be used.

    :param dropout: the dropout probability.

    :param channel_mult: channel multiplier for each level of the UNet.

    :param conv_resample: if True, use learned convolutions for upsampling and

        downsampling.

    :param dims: determines if the signal is 1D, 2D, or 3D.

    :param num_classes: if specified (as an int), then this model will be

        class-conditional with `num_classes` classes.

    :param use_checkpoint: use gradient checkpointing to reduce memory usage.

    :param num_heads: the number of attention heads in each attention layer.

    :param num_heads_channels: if specified, ignore num_heads and instead use

                               a fixed channel width per attention head.

    :param num_heads_upsample: works with num_heads to set a different number

                               of heads for upsampling. Deprecated.

    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.

    :param resblock_updown: use residual blocks for up/downsampling.

    """

    def __init__(

        self,

        in_channels,

        model_channels,

        out_channels,

        num_res_blocks,

        attention_resolutions,

        dropout=0,

        channel_mult=(1, 2, 4, 8),

        conv_resample=True,

        dims=2,

        num_classes=None,

        use_checkpoint=False,

        use_fp16=False,

        num_heads=1,

        num_head_channels=-1,

        num_heads_upsample=-1,

        use_scale_shift_norm=False,

        resblock_updown=False,

        encoder_channels=None,

    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.dtype = th.float16 if use_fp16 else th.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            self.label_emb = nn.Embedding(num_classes, time_embed_dim)

        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList(
            [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
        )
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=int(mult * model_channels),
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                            encoder_channels=encoder_channels,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
                encoder_channels=encoder_channels,
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=int(model_channels * mult),
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
                            encoder_channels=encoder_channels,
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch, swish=1.0),
            nn.Identity(),
            zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
        )
        self.use_fp16 = use_fp16

    def convert_to_fp16(self):
        """

        Convert the torso of the model to float16.

        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """

        Convert the torso of the model to float32.

        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

    def forward(self, x, timesteps, y=None):
        """

        Apply the model to an input batch.



        :param x: an [N x C x ...] Tensor of inputs.

        :param timesteps: a 1-D batch of timesteps.

        :param y: an [N] Tensor of labels, if class-conditional.

        :return: an [N x C x ...] Tensor of outputs.

        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"

        hs = []
        emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))

        if self.num_classes is not None:
            assert y.shape == (x.shape[0],)
            emb = emb + self.label_emb(y)

        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = th.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)

class SuperResUNetModel(UNetModel):
    """

    A UNetModel that performs super-resolution.



    Expects an extra kwarg `low_res` to condition on a low-resolution image.

    """

    def __init__(self, *args, **kwargs):
        if "in_channels" in kwargs:
            kwargs = dict(kwargs)
            kwargs["in_channels"] = kwargs["in_channels"] * 2
        else:
            # Curse you, Python. Or really, just curse positional arguments :|.
            args = list(args)
            args[1] = args[1] * 2
        super().__init__(*args, **kwargs)

    def forward(self, x, timesteps, low_res=None, **kwargs):
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        x = th.cat([x, upsampled], dim=1)
        return super().forward(x, timesteps, **kwargs)

    
class InpaintUNetModel(UNetModel):
    """

    A UNetModel which can perform inpainting.

    """

    def __init__(self, *args, **kwargs):
        if "in_channels" in kwargs:
            kwargs = dict(kwargs)
            kwargs["in_channels"] = kwargs["in_channels"] * 2 + 1
        else:
            # Curse you, Python. Or really, just curse positional arguments :|.
            args = list(args)
            args[1] = args[1] * 2 + 1
        super().__init__(*args, **kwargs)

    def forward(self, x, timesteps, inpaint_image=None, inpaint_mask=None, **kwargs):
        if inpaint_image is None:
            inpaint_image = th.zeros_like(x)
        if inpaint_mask is None:
            inpaint_mask = th.zeros_like(x[:, :1])
        return super().forward(
            th.cat([x, inpaint_image * inpaint_mask, inpaint_mask], dim=1),
            timesteps,
            **kwargs,
        )


class SuperResInpaintUNetModel(UNetModel):
    """

    A UNetModel which can perform both upsampling and inpainting.

    """

    def __init__(self, *args, **kwargs):
        if "in_channels" in kwargs:
            kwargs = dict(kwargs)
            kwargs["in_channels"] = kwargs["in_channels"] * 3 + 1
        else:
            # Curse you, Python. Or really, just curse positional arguments :|.
            args = list(args)
            args[1] = args[1] * 3 + 1
        super().__init__(*args, **kwargs)

    def forward(

        self,

        x,

        timesteps,

        inpaint_image=None,

        inpaint_mask=None,

        low_res=None,

        **kwargs,

    ):
        if inpaint_image is None:
            inpaint_image = th.zeros_like(x)
        if inpaint_mask is None:
            inpaint_mask = th.zeros_like(x[:, :1])
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        return super().forward(
            th.cat([x, inpaint_image * inpaint_mask, inpaint_mask, upsampled], dim=1),
            timesteps,
            **kwargs,
        )