File size: 22,052 Bytes
0b9f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F


class BaseNetwork(nn.Module):
    def __init__(self):
        super(BaseNetwork, self).__init__()

    def init_weights(self, init_type='normal', gain=0.02):
        '''
        initialize network's weights
        init_type: normal | xavier | kaiming | orthogonal
        https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39
        '''

        def init_func(m):
            classname = m.__class__.__name__
            if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
                if init_type == 'normal':
                    nn.init.normal_(m.weight.data, 0.0, gain)
                elif init_type == 'xavier':
                    nn.init.xavier_normal_(m.weight.data, gain=gain)
                elif init_type == 'kaiming':
                    nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
                elif init_type == 'orthogonal':
                    nn.init.orthogonal_(m.weight.data, gain=gain)

                if hasattr(m, 'bias') and m.bias is not None:
                    nn.init.constant_(m.bias.data, 0.0)

            elif classname.find('BatchNorm2d') != -1:
                nn.init.normal_(m.weight.data, 1.0, gain)
                nn.init.constant_(m.bias.data, 0.0)

        self.apply(init_func)

def weights_init(init_type='gaussian'):
    def init_fun(m):
        classname = m.__class__.__name__
        if (classname.find('Conv') == 0 or classname.find(
                'Linear') == 0) and hasattr(m, 'weight'):
            if init_type == 'gaussian':
                nn.init.normal_(m.weight, 0.0, 0.02)
            elif init_type == 'xavier':
                nn.init.xavier_normal_(m.weight, gain=math.sqrt(2))
            elif init_type == 'kaiming':
                nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                nn.init.orthogonal_(m.weight, gain=math.sqrt(2))
            elif init_type == 'default':
                pass
            else:
                assert 0, "Unsupported initialization: {}".format(init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                nn.init.constant_(m.bias, 0.0)

    return init_fun

class PartialConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True):
        super().__init__()
        self.input_conv = nn.Conv2d(in_channels, out_channels, kernel_size,
                                    stride, padding, dilation, groups, bias)
        self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size,
                                   stride, padding, dilation, groups, False)
        self.input_conv.apply(weights_init('kaiming'))
        self.slide_winsize = in_channels * kernel_size * kernel_size

        torch.nn.init.constant_(self.mask_conv.weight, 1.0)

        # mask is not updated
        for param in self.mask_conv.parameters():
            param.requires_grad = False

    def forward(self, input, mask):
        # http://masc.cs.gmu.edu/wiki/partialconv
        # C(X) = W^T * X + b, C(0) = b, D(M) = 1 * M + 0 = sum(M)
        # W^T* (M .* X) / sum(M) + b = [C(M .* X) – C(0)] / D(M) + C(0)
        output = self.input_conv(input * mask)
        if self.input_conv.bias is not None:
            output_bias = self.input_conv.bias.view(1, -1, 1, 1).expand_as(
                output)
        else:
            output_bias = torch.zeros_like(output)

        with torch.no_grad():
            output_mask = self.mask_conv(mask)

        no_update_holes = output_mask == 0

        mask_sum = output_mask.masked_fill_(no_update_holes, 1.0)

        output_pre = ((output - output_bias) * self.slide_winsize) / mask_sum + output_bias
        output = output_pre.masked_fill_(no_update_holes, 0.0)

        new_mask = torch.ones_like(output)
        new_mask = new_mask.masked_fill_(no_update_holes, 0.0)

        return output, new_mask


class PCBActiv(nn.Module):
    def __init__(self, in_ch, out_ch, bn=True, sample='none-3', activ='relu',
                 conv_bias=False):
        super().__init__()
        if sample == 'down-5':
            self.conv = PartialConv(in_ch, out_ch, 5, 2, 2, bias=conv_bias)
        elif sample == 'down-7':
            self.conv = PartialConv(in_ch, out_ch, 7, 2, 3, bias=conv_bias)
        elif sample == 'down-3':
            self.conv = PartialConv(in_ch, out_ch, 3, 2, 1, bias=conv_bias)
        else:
            self.conv = PartialConv(in_ch, out_ch, 3, 1, 1, bias=conv_bias)

        if bn:
            self.bn = nn.BatchNorm2d(out_ch)
        if activ == 'relu':
            self.activation = nn.ReLU()
        elif activ == 'leaky':
            self.activation = nn.LeakyReLU(negative_slope=0.2)

    def forward(self, input, input_mask):
        h, h_mask = self.conv(input, input_mask)
        if hasattr(self, 'bn'):
            h = self.bn(h)
        if hasattr(self, 'activation'):
            h = self.activation(h)
        return h, h_mask

class Inpaint_Depth_Net(nn.Module):
    def __init__(self, layer_size=7, upsampling_mode='nearest'):
        super().__init__()
        in_channels = 4
        out_channels = 1
        self.freeze_enc_bn = False
        self.upsampling_mode = upsampling_mode
        self.layer_size = layer_size
        self.enc_1 = PCBActiv(in_channels, 64, bn=False, sample='down-7', conv_bias=True)
        self.enc_2 = PCBActiv(64, 128, sample='down-5', conv_bias=True)
        self.enc_3 = PCBActiv(128, 256, sample='down-5')
        self.enc_4 = PCBActiv(256, 512, sample='down-3')
        for i in range(4, self.layer_size):
            name = 'enc_{:d}'.format(i + 1)
            setattr(self, name, PCBActiv(512, 512, sample='down-3'))

        for i in range(4, self.layer_size):
            name = 'dec_{:d}'.format(i + 1)
            setattr(self, name, PCBActiv(512 + 512, 512, activ='leaky'))
        self.dec_4 = PCBActiv(512 + 256, 256, activ='leaky')
        self.dec_3 = PCBActiv(256 + 128, 128, activ='leaky')
        self.dec_2 = PCBActiv(128 + 64, 64, activ='leaky')
        self.dec_1 = PCBActiv(64 + in_channels, out_channels,
                              bn=False, activ=None, conv_bias=True)
    def add_border(self, input, mask_flag, PCONV=True):
        with torch.no_grad():
            h = input.shape[-2]
            w = input.shape[-1]
            require_len_unit = 2 ** self.layer_size
            residual_h = int(np.ceil(h / float(require_len_unit)) * require_len_unit - h) # + 2*require_len_unit
            residual_w = int(np.ceil(w / float(require_len_unit)) * require_len_unit - w) # + 2*require_len_unit
            enlarge_input = torch.zeros((input.shape[0], input.shape[1], h + residual_h, w + residual_w)).to(input.device)
            if mask_flag:
                if PCONV is False:
                    enlarge_input += 1.0
                enlarge_input = enlarge_input.clamp(0.0, 1.0)
            else:
                enlarge_input[:, 2, ...] = 0.0
            anchor_h = residual_h//2
            anchor_w = residual_w//2
            enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input

        return enlarge_input, [anchor_h, anchor_h+h, anchor_w, anchor_w+w]

    def forward_3P(self, mask, context, depth, edge, unit_length=128, cuda=None):
        with torch.no_grad():
            input = torch.cat((depth, edge, context, mask), dim=1)
            n, c, h, w = input.shape
            residual_h = int(np.ceil(h / float(unit_length)) * unit_length - h)
            residual_w = int(np.ceil(w / float(unit_length)) * unit_length - w)
            anchor_h = residual_h//2
            anchor_w = residual_w//2
            enlarge_input = torch.zeros((n, c, h + residual_h, w + residual_w)).to(cuda)
            enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input
            # enlarge_input[:, 3] = 1. - enlarge_input[:, 3]
            depth_output = self.forward(enlarge_input)
            depth_output = depth_output[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w]
            # import pdb; pdb.set_trace()

        return depth_output

    def forward(self, input_feat, refine_border=False, sample=False, PCONV=True):
        input = input_feat
        input_mask = (input_feat[:, -2:-1] + input_feat[:, -1:]).clamp(0, 1).repeat(1, input.shape[1], 1, 1)

        vis_input = input.cpu().data.numpy()
        vis_input_mask = input_mask.cpu().data.numpy()
        H, W = input.shape[-2:]
        if refine_border is True:
            input, anchor = self.add_border(input, mask_flag=False)
            input_mask, anchor = self.add_border(input_mask, mask_flag=True, PCONV=PCONV)
        h_dict = {}  # for the output of enc_N
        h_mask_dict = {}  # for the output of enc_N
        h_dict['h_0'], h_mask_dict['h_0'] = input, input_mask

        h_key_prev = 'h_0'
        for i in range(1, self.layer_size + 1):
            l_key = 'enc_{:d}'.format(i)
            h_key = 'h_{:d}'.format(i)
            h_dict[h_key], h_mask_dict[h_key] = getattr(self, l_key)(
                h_dict[h_key_prev], h_mask_dict[h_key_prev])
            h_key_prev = h_key

        h_key = 'h_{:d}'.format(self.layer_size)
        h, h_mask = h_dict[h_key], h_mask_dict[h_key]

        for i in range(self.layer_size, 0, -1):
            enc_h_key = 'h_{:d}'.format(i - 1)
            dec_l_key = 'dec_{:d}'.format(i)

            h = F.interpolate(h, scale_factor=2, mode=self.upsampling_mode)
            h_mask = F.interpolate(h_mask, scale_factor=2, mode='nearest')

            h = torch.cat([h, h_dict[enc_h_key]], dim=1)
            h_mask = torch.cat([h_mask, h_mask_dict[enc_h_key]], dim=1)
            h, h_mask = getattr(self, dec_l_key)(h, h_mask)
        output = h
        if refine_border is True:
            h_mask = h_mask[..., anchor[0]:anchor[1], anchor[2]:anchor[3]]
            output = output[..., anchor[0]:anchor[1], anchor[2]:anchor[3]]

        return output

class Inpaint_Edge_Net(BaseNetwork):
    def __init__(self, residual_blocks=8, init_weights=True):
        super(Inpaint_Edge_Net, self).__init__()
        in_channels = 7
        out_channels = 1
        self.encoder = []
        # 0
        self.encoder_0 = nn.Sequential(
                            nn.ReflectionPad2d(3),
                            spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=7, padding=0), True),
                            nn.InstanceNorm2d(64, track_running_stats=False),
                            nn.ReLU(True))
        # 1
        self.encoder_1 = nn.Sequential(
                            spectral_norm(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1), True),
                            nn.InstanceNorm2d(128, track_running_stats=False),
                            nn.ReLU(True))
        # 2
        self.encoder_2 = nn.Sequential(
                            spectral_norm(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1), True),
                            nn.InstanceNorm2d(256, track_running_stats=False),
                            nn.ReLU(True))
        # 3
        blocks = []
        for _ in range(residual_blocks):
            block = ResnetBlock(256, 2)
            blocks.append(block)

        self.middle = nn.Sequential(*blocks)
        # + 3
        self.decoder_0 = nn.Sequential(
                            spectral_norm(nn.ConvTranspose2d(in_channels=256+256, out_channels=128, kernel_size=4, stride=2, padding=1), True),
                            nn.InstanceNorm2d(128, track_running_stats=False),
                            nn.ReLU(True))
        # + 2
        self.decoder_1 = nn.Sequential(
                            spectral_norm(nn.ConvTranspose2d(in_channels=128+128, out_channels=64, kernel_size=4, stride=2, padding=1), True),
                            nn.InstanceNorm2d(64, track_running_stats=False),
                            nn.ReLU(True))
        # + 1
        self.decoder_2 = nn.Sequential(
                            nn.ReflectionPad2d(3),
                            nn.Conv2d(in_channels=64+64, out_channels=out_channels, kernel_size=7, padding=0),
                            )

        if init_weights:
            self.init_weights()

    def add_border(self, input, channel_pad_1=None):
        h = input.shape[-2]
        w = input.shape[-1]
        require_len_unit = 16
        residual_h = int(np.ceil(h / float(require_len_unit)) * require_len_unit - h) # + 2*require_len_unit
        residual_w = int(np.ceil(w / float(require_len_unit)) * require_len_unit - w) # + 2*require_len_unit
        enlarge_input = torch.zeros((input.shape[0], input.shape[1], h + residual_h, w + residual_w)).to(input.device)
        if channel_pad_1 is not None:
            for channel in channel_pad_1:
                enlarge_input[:, channel] = 1
        anchor_h = residual_h//2
        anchor_w = residual_w//2
        enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input

        return enlarge_input, [anchor_h, anchor_h+h, anchor_w, anchor_w+w]

    def forward_3P(self, mask, context, rgb, disp, edge, unit_length=128, cuda=None):
        with torch.no_grad():
            input = torch.cat((rgb, disp/disp.max(), edge, context, mask), dim=1)
            n, c, h, w = input.shape
            residual_h = int(np.ceil(h / float(unit_length)) * unit_length - h)
            residual_w = int(np.ceil(w / float(unit_length)) * unit_length - w)
            anchor_h = residual_h//2
            anchor_w = residual_w//2
            enlarge_input = torch.zeros((n, c, h + residual_h, w + residual_w)).to(cuda)
            enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input
            edge_output = self.forward(enlarge_input)
            edge_output = edge_output[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w]

        return edge_output

    def forward(self, x, refine_border=False):
        if refine_border:
            x, anchor = self.add_border(x, [5])
        x1 = self.encoder_0(x)
        x2 = self.encoder_1(x1)
        x3 = self.encoder_2(x2)
        x4 = self.middle(x3)
        x5 = self.decoder_0(torch.cat((x4, x3), dim=1))
        x6 = self.decoder_1(torch.cat((x5, x2), dim=1))
        x7 = self.decoder_2(torch.cat((x6, x1), dim=1))
        x = torch.sigmoid(x7)
        if refine_border:
            x = x[..., anchor[0]:anchor[1], anchor[2]:anchor[3]]

        return x

class Inpaint_Color_Net(nn.Module):
    def __init__(self, layer_size=7, upsampling_mode='nearest', add_hole_mask=False, add_two_layer=False, add_border=False):
        super().__init__()
        self.freeze_enc_bn = False
        self.upsampling_mode = upsampling_mode
        self.layer_size = layer_size
        in_channels = 6
        self.enc_1 = PCBActiv(in_channels, 64, bn=False, sample='down-7')
        self.enc_2 = PCBActiv(64, 128, sample='down-5')
        self.enc_3 = PCBActiv(128, 256, sample='down-5')
        self.enc_4 = PCBActiv(256, 512, sample='down-3')
        self.enc_5 = PCBActiv(512, 512, sample='down-3')
        self.enc_6 = PCBActiv(512, 512, sample='down-3')
        self.enc_7 = PCBActiv(512, 512, sample='down-3')

        self.dec_7 = PCBActiv(512+512, 512, activ='leaky')
        self.dec_6 = PCBActiv(512+512, 512, activ='leaky')

        self.dec_5A = PCBActiv(512 + 512, 512, activ='leaky')
        self.dec_4A = PCBActiv(512 + 256, 256, activ='leaky')
        self.dec_3A = PCBActiv(256 + 128, 128, activ='leaky')
        self.dec_2A = PCBActiv(128 + 64, 64, activ='leaky')
        self.dec_1A = PCBActiv(64 + in_channels, 3, bn=False, activ=None, conv_bias=True)
        '''
        self.dec_5B = PCBActiv(512 + 512, 512, activ='leaky')
        self.dec_4B = PCBActiv(512 + 256, 256, activ='leaky')
        self.dec_3B = PCBActiv(256 + 128, 128, activ='leaky')
        self.dec_2B = PCBActiv(128 + 64, 64, activ='leaky')
        self.dec_1B = PCBActiv(64 + 4, 1, bn=False, activ=None, conv_bias=True)
        '''
    def cat(self, A, B):
        return torch.cat((A, B), dim=1)

    def upsample(self, feat, mask):
        feat = F.interpolate(feat, scale_factor=2, mode=self.upsampling_mode)
        mask = F.interpolate(mask, scale_factor=2, mode='nearest')

        return feat, mask

    def forward_3P(self, mask, context, rgb, edge, unit_length=128, cuda=None):
        with torch.no_grad():
            input = torch.cat((rgb, edge, context, mask), dim=1)
            n, c, h, w = input.shape
            residual_h = int(np.ceil(h / float(unit_length)) * unit_length - h) # + 128
            residual_w = int(np.ceil(w / float(unit_length)) * unit_length - w) # + 256
            anchor_h = residual_h//2
            anchor_w = residual_w//2
            enlarge_input = torch.zeros((n, c, h + residual_h, w + residual_w)).to(cuda)
            enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input
            # enlarge_input[:, 3] = 1. - enlarge_input[:, 3]
            enlarge_input = enlarge_input.to(cuda)
            rgb_output = self.forward(enlarge_input)
            rgb_output = rgb_output[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w]

        return rgb_output

    def forward(self, input, add_border=False):
        input_mask = (input[:, -2:-1] + input[:, -1:]).clamp(0, 1)
        H, W = input.shape[-2:]
        f_0, h_0 = input, input_mask.repeat((1,input.shape[1],1,1))
        f_1, h_1 = self.enc_1(f_0, h_0)
        f_2, h_2 = self.enc_2(f_1, h_1)
        f_3, h_3 = self.enc_3(f_2, h_2)
        f_4, h_4 = self.enc_4(f_3, h_3)
        f_5, h_5 = self.enc_5(f_4, h_4)
        f_6, h_6 = self.enc_6(f_5, h_5)
        f_7, h_7 = self.enc_7(f_6, h_6)

        o_7, k_7 = self.upsample(f_7, h_7)
        o_6, k_6 = self.dec_7(self.cat(o_7, f_6), self.cat(k_7, h_6))
        o_6, k_6 = self.upsample(o_6, k_6)
        o_5, k_5 = self.dec_6(self.cat(o_6, f_5), self.cat(k_6, h_5))
        o_5, k_5 = self.upsample(o_5, k_5)
        o_5A, k_5A = o_5, k_5
        o_5B, k_5B = o_5, k_5
        ###############
        o_4A, k_4A = self.dec_5A(self.cat(o_5A, f_4), self.cat(k_5A, h_4))
        o_4A, k_4A = self.upsample(o_4A, k_4A)
        o_3A, k_3A = self.dec_4A(self.cat(o_4A, f_3), self.cat(k_4A, h_3))
        o_3A, k_3A = self.upsample(o_3A, k_3A)
        o_2A, k_2A = self.dec_3A(self.cat(o_3A, f_2), self.cat(k_3A, h_2))
        o_2A, k_2A = self.upsample(o_2A, k_2A)
        o_1A, k_1A = self.dec_2A(self.cat(o_2A, f_1), self.cat(k_2A, h_1))
        o_1A, k_1A = self.upsample(o_1A, k_1A)
        o_0A, k_0A = self.dec_1A(self.cat(o_1A, f_0), self.cat(k_1A, h_0))

        return torch.sigmoid(o_0A)

    def train(self, mode=True):
        """
        Override the default train() to freeze the BN parameters
        """
        super().train(mode)
        if self.freeze_enc_bn:
            for name, module in self.named_modules():
                if isinstance(module, nn.BatchNorm2d) and 'enc' in name:
                    module.eval()

class Discriminator(BaseNetwork):
    def __init__(self, use_sigmoid=True, use_spectral_norm=True, init_weights=True, in_channels=None):
        super(Discriminator, self).__init__()
        self.use_sigmoid = use_sigmoid
        self.conv1 = self.features = nn.Sequential(
            spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.conv2 = nn.Sequential(
            spectral_norm(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.conv3 = nn.Sequential(
            spectral_norm(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.conv4 = nn.Sequential(
            spectral_norm(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.conv5 = nn.Sequential(
            spectral_norm(nn.Conv2d(in_channels=512, out_channels=1, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm),
        )

        if init_weights:
            self.init_weights()

    def forward(self, x):
        conv1 = self.conv1(x)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)
        conv4 = self.conv4(conv3)
        conv5 = self.conv5(conv4)

        outputs = conv5
        if self.use_sigmoid:
            outputs = torch.sigmoid(conv5)

        return outputs, [conv1, conv2, conv3, conv4, conv5]

class ResnetBlock(nn.Module):
    def __init__(self, dim, dilation=1):
        super(ResnetBlock, self).__init__()
        self.conv_block = nn.Sequential(
            nn.ReflectionPad2d(dilation),
            spectral_norm(nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=0, dilation=dilation, bias=not True), True),
            nn.InstanceNorm2d(dim, track_running_stats=False),
            nn.LeakyReLU(negative_slope=0.2),

            nn.ReflectionPad2d(1),
            spectral_norm(nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=0, dilation=1, bias=not True), True),
            nn.InstanceNorm2d(dim, track_running_stats=False),
        )

    def forward(self, x):
        out = x + self.conv_block(x)

        # Remove ReLU at the end of the residual block
        # http://torch.ch/blog/2016/02/04/resnets.html

        return out


def spectral_norm(module, mode=True):
    if mode:
        return nn.utils.spectral_norm(module)

    return module