File size: 4,787 Bytes
7b0adee b11da8b 44f0668 7b0adee b11da8b 7b0adee b11da8b 7b0adee b11da8b 7b0adee b11da8b 7b0adee b11da8b 347c084 822516c b11da8b 822516c b11da8b 822516c b11da8b 822516c b11da8b 7b0adee b11da8b 44f0668 7b0adee 44f0668 7b0adee b11da8b 7b0adee b11da8b 7b0adee b11da8b 7b0adee 822516c 7b0adee b11da8b 7b0adee b11da8b 7b0adee b11da8b 7b0adee b11da8b 7b0adee 347c084 b11da8b 822516c b11da8b 822516c 3a1ba74 b11da8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import streamlit as st
from streamlit_chat import message
from langchain_openai import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import (ConversationBufferMemory,
ConversationSummaryMemory,
ConversationBufferWindowMemory
)
if 'conversation' not in st.session_state:
st.session_state['conversation'] =None
if 'messages' not in st.session_state:
st.session_state['messages'] =[]
if 'API_Key' not in st.session_state:
st.session_state['API_Key'] =''
# Setting page title and header
st.set_page_config(page_title="ChatMate: Your Professional AI Conversation Partner Solution", page_icon=":robot_face:")
st.markdown("<h1 style='text-align: center; color: navy;'>ChatMate</h1>", unsafe_allow_html=True)
st.markdown("<h4 style='text-align: center;'>OpenAI-like Chat Experience</h4>", unsafe_allow_html=True)
st.markdown("<p style='text-align: right'>By <a href='https://entzyeung.github.io/portfolio/index.html'>Lorentz Yeung</a></p>", unsafe_allow_html=True)
st.markdown("<p style='text-align: left;'>I am capable of recalling previous parts of our conversation, such as remembering your name if you share it with me.</p>", unsafe_allow_html=True)
st.session_state['API_Key']= st.text_input("First, to get it work, put your OpenAI API Key here please, the system will enter for you automatically.",type="password")
st.markdown("<p style='text-align: left;'>How can I help you today?</p>", unsafe_allow_html=True)
# API Keys
# st.sidebar.text_input() will automatically update st.session_state['API_Key'] with the input value whenever the user types into the field.
st.sidebar.title("Introduction")
st.sidebar.markdown("""
ChatMate is an advanced conversational AI interface, expertly crafted to demonstrate the fusion of Streamlit's user-friendly design and OpenAI's powerful GPT-3.5 model. Here are its highlights:
<ul style='text-align: left;'>
<li><strong>Intuitive Interface</strong>: Built with Streamlit, ChatMate offers a clean, responsive OpenAI-ChatGPT-like user experience, allowing for natural dialogue with the AI.</li>
<li><strong>Advanced NLP</strong>: Incorporating OpenAI's most advanced GPT model, the app provides nuanced understanding and generation of human-like text.</li>
<li><strong>State Management</strong>: Utilizes <code>ConversationChain</code> and <code>ConversationMemory</code> from <code>langchain</code> to preserve the context and flow, ensuring coherent and engaging interactions.</li>
<li><strong>Python Proficiency</strong>: The app's robust backend, written in Python, reflects the data scientist’s adeptness in programming and system design.</li>
<li><strong>Secure Interaction</strong>: Streamlit's session state management is used for secure API key handling and user input retention across sessions.</li>
</ul>
""", unsafe_allow_html=True)
st.markdown("<p style='text-align: right'>By <a href='https://entzyeung.github.io/portfolio/index.html'>Lorentz Yeung</a></p>", unsafe_allow_html=True)
# Function to get response from the model
def getresponse(userInput, api_key):
if st.session_state['conversation'] is None:
llm = ChatOpenAI(
temperature=0,
openai_api_key=api_key,
model_name='gpt-3.5-turbo'
)
st.session_state['conversation'] = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationSummaryMemory(llm=llm)
)
response=st.session_state['conversation'].predict(input=userInput)
print(st.session_state['conversation'].memory.buffer)
return response
response_container = st.container()
# container for user input text box
container = st.container()
# User input and response display
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_area("Ask me questions please", key='input', height=100)
submit_button = st.form_submit_button(label='Send')
if submit_button:
st.session_state['messages'].append(user_input)
model_response=getresponse(user_input,st.session_state['API_Key'])
st.session_state['messages'].append(model_response)
with response_container:
for i in range(len(st.session_state['messages'])):
if (i % 2) == 0:
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user', avatar_style="")
else:
message(st.session_state['messages'][i], key=str(i) + '_AI', avatar_style="")
|