File size: 1,144 Bytes
1de7d7b 9ec3978 1de7d7b 9ec3978 1de7d7b 9ec3978 1de7d7b 9ec3978 1de7d7b 9ec3978 1de7d7b 9ec3978 1de7d7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,
import streamlit as st
from langchain.llms import OpenAI
#Function to return the response
def load_answer(question):
llm = OpenAI(model_name="gpt-3.5-turbo",temperature=0)
answer=llm(question)
return answer
#App UI starts here
st.set_page_config(page_title="Entz's LLM LangChain Base Model", page_icon=":ant:")
st.header("Entz's LLM LangChain Base Model")
#Gets the user input
def question():
input_text = st.text_input("Enter your questions: ", key="input")
return input_text
user_input = question()
response = load_answer(user_input)
submit = st.button('Chat-gbt3-turbo Answer')
#If generate button is clicked
if submit:
st.subheader("Chat-gbt3-turbo:")
st.write(response)
|