File size: 15,370 Bytes
3dfb7ca 9b2f3b7 712720b bea66c7 3dfb7ca bea66c7 9b2f3b7 bea66c7 712720b bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 3dfb7ca bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 3dfb7ca bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 9b2f3b7 bea66c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# core/eil_processor.py
# MEC EIL Processor – World-Class Signal Normalization Edition
import yaml
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
class EILProcessor:
def __init__(self, codex_informer, softmax_threshold=0.6):
self.codex_informer = codex_informer
self.softmax_threshold = softmax_threshold
# Build alias lookup from Codex
self.alias_lookup = self.codex_informer.build_alias_lookup()
print(f"[EILProcessor] Alias map loaded with {len(self.alias_lookup)} entries")
# Load crosswalk.yaml
with open('config/crosswalk.yaml', 'r', encoding='utf-8') as f:
yaml_data = yaml.safe_load(f)
crosswalk_data = yaml_data['crosswalk']
story_pattern_data = yaml_data.get('story_patterns', [])
# Build crosswalk lookup
self.crosswalk_lookup = {}
for entry in crosswalk_data:
phrase = self.normalize_text(entry['phrase'])
emotion_code = entry['emotion_code']
self.crosswalk_lookup[phrase] = emotion_code
# Build story_patterns lookup
self.story_patterns_lookup = {}
for entry in story_pattern_data:
pattern = self.normalize_text(entry['pattern'])
emotion_code = entry['emotion_code']
self.story_patterns_lookup[pattern] = emotion_code
print(f"[EILProcessor] Crosswalk loaded with {len(self.crosswalk_lookup)} entries")
print(f"[EILProcessor] Story Patterns loaded with {len(self.story_patterns_lookup)} entries")
# Emotion keyword dictionary for signal normalization/blending
self.emotion_keyword_map = {
"FAM-ANG": ["anger", "angry", "hate", "furious", "rage", "resentment"],
"FAM-HEL": ["helpless", "powerless", "can't", "unable", "trapped", "stuck", "overwhelmed", "overwhelm"],
"FAM-SAD": ["sad", "down", "unhappy", "miserable", "depressed", "blue", "empty"],
"FAM-FEA": ["afraid", "scared", "fear", "terrified", "worried", "nervous", "anxious", "can't sleep"],
"FAM-LOV": ["love", "loved", "loving", "caring", "affection", "proud"],
"FAM-JOY": ["joy", "happy", "excited", "delighted", "content", "proud"],
"FAM-SUR": ["surprised", "amazed", "astonished", "shocked"],
"FAM-DIS": ["disgust", "disgusted", "gross", "revolted"],
"FAM-SHA": ["ashamed", "shame", "embarrassed", "humiliated"],
"FAM-GUI": ["guilty", "guilt", "remorse", "regret"],
# Add more as needed
}
# For sentiment-to-emotion mapping of ambiguous/indirect language
self.sentiment_cue_map = [
# (sentiment, regex or cue, mapped emotion)
("negative", r"can.?t sleep|insomnia|restless|wake up", "FAM-FEA"),
("negative", r"too much|overwhelmed|can.?t cope|can.?t deal", "FAM-HEL"),
("negative", r"nothing feels right|empty|pointless|no purpose", "FAM-SAD"),
("negative", r"don't care|apathy|numb", "FAM-LON"),
("positive", r"did it|proud|relieved", "FAM-JOY"),
("neutral", r"just tired|exhausted", "FAM-HEL"),
# ...add more for coverage
]
# Load emotion and sentiment models
self.tokenizer = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-emotion')
self.model = AutoModelForSequenceClassification.from_pretrained('cardiffnlp/twitter-roberta-base-emotion')
self.sentiment_tokenizer = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-sentiment-latest')
self.sentiment_model = AutoModelForSequenceClassification.from_pretrained('cardiffnlp/twitter-roberta-base-sentiment-latest')
def normalize_text(self, text):
normalization_map = {
"i am feeling ": "",
"i feel ": "",
"feeling ": "",
"i'm feeling ": "",
"i am ": "",
"i'm ": ""
}
text = text.lower().strip()
for k, v in normalization_map.items():
if text.startswith(k):
text = text.replace(k, "", 1)
break
text = re.sub(r'[.!?]', '', text)
return text
def is_story_input(self, text):
clause_markers = [',', ';', '.', 'but', 'because', 'so that', 'which', 'when', 'while']
token_count = len(text.split())
clause_hits = any(marker in text for marker in clause_markers)
return token_count > 12 or clause_hits
def chunk_story(self, text):
chunks = re.split(r'[.,;!?]|\b(?:and|but|because|so|although|though|while|when)\b', text, flags=re.IGNORECASE)
chunks = [chunk.strip() for chunk in chunks if chunk and chunk.strip()]
return chunks
def detect_emotion_blend_with_negation(self, norm_text):
blend = {}
for fam, keywords in self.emotion_keyword_map.items():
for kw in keywords:
negation_patterns = [
rf"not {kw}", rf"no longer {kw}", rf"never {kw}",
rf"no {kw}", rf"\bwithout {kw}"
]
if any(re.search(p, norm_text) for p in negation_patterns):
continue
if kw in norm_text:
blend[fam] = blend.get(fam, 0) + 1.0
return blend
def get_sentiment(self, norm_text):
tokens = self.sentiment_tokenizer(norm_text, return_tensors='pt')
with torch.no_grad():
logits = self.sentiment_model(**tokens).logits
probs = F.softmax(logits, dim=-1).squeeze()
top_prob, top_idx = torch.max(probs, dim=-1)
sentiment_label = self.sentiment_model.config.id2label[top_idx.item()]
return sentiment_label.lower(), top_prob.item()
def infer_emotion(self, input_text):
norm_text = self.normalize_text(input_text)
# 1️⃣ Story Pattern Override
if norm_text in self.story_patterns_lookup:
primary_emotion_code = self.story_patterns_lookup[norm_text]
emotion_data = self.codex_informer.resolve_emotion_family(primary_emotion_code)
print(f"[EILProcessor] Story Pattern match: '{norm_text}' → {primary_emotion_code}")
packet = {
'phrases': [input_text],
'emotion_candidates': [{'phrase': input_text, 'candidate_emotion': primary_emotion_code}],
'metadata': {'source': 'EILProcessor (story pattern)', 'input_type': 'story'},
'emotion_family': emotion_data['emotion_family'],
'primary_emotion_code': emotion_data['primary_emotion_code'],
'arc': emotion_data['arc'],
'resonance': emotion_data['resonance'],
'blend': {emotion_data['primary_emotion_code']: 1.0},
'trajectory': [emotion_data['primary_emotion_code']],
}
return packet
# 2️⃣ Story detection (chunking and blend aggregation)
input_type = 'phrase'
if self.is_story_input(norm_text):
input_type = 'story'
print(f"[EILProcessor] Story mode activated for input: '{norm_text}'")
chunks = self.chunk_story(norm_text)
chunk_results = []
blend_accum = {}
trajectory = []
for chunk in chunks:
sub_result = self.infer_emotion(chunk) # RECURSIVE CALL
chunk_results.append(sub_result)
# Accumulate blends (weighted by confidence if available)
conf = sub_result.get('confidence', 1.0)
for fam, val in sub_result.get('blend', {}).items():
blend_accum[fam] = blend_accum.get(fam, 0) + val * conf
# Trajectory
if 'primary_emotion_code' in sub_result:
trajectory.append(sub_result['primary_emotion_code'])
# Normalize blend
if blend_accum:
total = sum(blend_accum.values())
for k in blend_accum:
blend_accum[k] /= total
dominant_family = max(blend_accum.items(), key=lambda x: x[1])[0]
else:
dominant_family = "FAM-NEU"
blend_accum = {"FAM-NEU": 1.0}
trajectory = ["FAM-NEU"]
emotion_data = self.codex_informer.resolve_emotion_family(dominant_family)
packet = {
'phrases': [input_text] + [r['phrases'][0] for r in chunk_results],
'emotion_candidates': [{'phrase': r['phrases'][0], 'candidate_emotion': r.get('primary_emotion_code', 'FAM-NEU')} for r in chunk_results],
'metadata': {'source': 'EILProcessor (story mode)', 'input_type': input_type},
'emotion_family': emotion_data['emotion_family'],
'primary_emotion_code': emotion_data['primary_emotion_code'],
'arc': emotion_data['arc'],
'resonance': emotion_data['resonance'],
'blend': blend_accum,
'trajectory': trajectory,
}
return packet
# 3️⃣ Crosswalk check
if norm_text in self.crosswalk_lookup:
primary_emotion_code = self.crosswalk_lookup[norm_text]
emotion_data = self.codex_informer.resolve_emotion_family(primary_emotion_code)
print(f"[EILProcessor] Crosswalk match: '{norm_text}' → {primary_emotion_code}")
packet = {
'phrases': [input_text],
'emotion_candidates': [{'phrase': input_text, 'candidate_emotion': primary_emotion_code}],
'metadata': {'source': 'EILProcessor (crosswalk)', 'input_type': input_type},
'emotion_family': emotion_data['emotion_family'],
'primary_emotion_code': emotion_data['primary_emotion_code'],
'arc': emotion_data['arc'],
'resonance': emotion_data['resonance'],
'blend': {emotion_data['primary_emotion_code']: 1.0},
'trajectory': [emotion_data['primary_emotion_code']],
}
return packet
# 4️⃣ Alias lookup
if norm_text in self.alias_lookup:
variant_code = self.alias_lookup[norm_text]
emotion_family = variant_code.split('-')[1]
family_code = f"FAM-{emotion_family}"
print(f"[EILProcessor] Alias match: '{norm_text}' → {variant_code}")
packet = {
'phrases': [input_text],
'emotion_candidates': [{'phrase': input_text, 'candidate_emotion': variant_code}],
'metadata': {'source': 'EILProcessor (alias match)', 'input_type': input_type},
'emotion_family': family_code,
'primary_emotion_code': variant_code,
'arc': 'Pending',
'resonance': 'Pending',
'blend': {variant_code: 1.0},
'trajectory': [variant_code],
}
return packet
# 5️⃣ Signal normalization - blend detection & negation
blend = self.detect_emotion_blend_with_negation(norm_text)
if blend:
total = sum(blend.values())
for k in blend:
blend[k] /= total
primary_code = max(blend.items(), key=lambda x: x[1])[0]
emotion_data = self.codex_informer.resolve_emotion_family(primary_code)
print(f"[EILProcessor] Signal normalization keyword blend: {blend} (primary: {primary_code})")
packet = {
'phrases': [input_text],
'emotion_candidates': [{'phrase': input_text, 'candidate_emotion': primary_code}],
'metadata': {'source': 'EILProcessor (signal normalization)', 'input_type': input_type},
'emotion_family': emotion_data['emotion_family'],
'primary_emotion_code': emotion_data['primary_emotion_code'],
'arc': emotion_data['arc'],
'resonance': emotion_data['resonance'],
'blend': blend,
'trajectory': [primary_code],
}
return packet
# 6️⃣ Sentiment-to-emotion mapping for non-EI language
sentiment, sentiment_conf = self.get_sentiment(norm_text)
print(f"[EILProcessor] Sentiment fallback: {sentiment} ({sentiment_conf:.2f})")
for sent, cue, fam in self.sentiment_cue_map:
if sent == sentiment and re.search(cue, norm_text):
emotion_data = self.codex_informer.resolve_emotion_family(fam)
packet = {
'phrases': [input_text],
'emotion_candidates': [{'phrase': input_text, 'candidate_emotion': fam}],
'metadata': {'source': 'EILProcessor (sentiment-to-emotion)', 'input_type': input_type},
'emotion_family': emotion_data['emotion_family'],
'primary_emotion_code': emotion_data['primary_emotion_code'],
'arc': emotion_data['arc'],
'resonance': emotion_data['resonance'],
'blend': {fam: 1.0},
'trajectory': [fam],
}
return packet
# 7️⃣ Model fallback (last resort)
print(f"[EILProcessor] No crosswalk/alias/keyword/sentiment match — running model on: '{norm_text}'")
tokens = self.tokenizer(norm_text, return_tensors='pt')
with torch.no_grad():
logits = self.model(**tokens).logits
probs = F.softmax(logits, dim=-1).squeeze()
top_prob, top_idx = torch.max(probs, dim=-1)
predicted_label = self.model.config.id2label[top_idx.item()]
confidence = top_prob.item()
if confidence < self.softmax_threshold:
predicted_label = 'neutral'
print(f"[EILProcessor] Low confidence ({confidence:.2f}) — setting to 'neutral'")
print(f"[EILProcessor] Model prediction: {predicted_label} ({confidence:.2f})")
model_to_codex_map = {
"joy": "FAM-JOY",
"anger": "FAM-ANG",
"sadness": "FAM-SAD",
"fear": "FAM-FEA",
"love": "FAM-LOV",
"surprise": "FAM-SUR",
"disgust": "FAM-DIS",
"neutral": "FAM-NEU"
}
primary_emotion_code = model_to_codex_map.get(predicted_label.lower(), "FAM-NEU")
emotion_data = self.codex_informer.resolve_emotion_family(primary_emotion_code)
blend = {emotion_data['primary_emotion_code']: 1.0}
packet = {
'phrases': [input_text],
'emotion_candidates': [{'phrase': input_text, 'candidate_emotion': predicted_label}],
'metadata': {'source': 'EILProcessor (model)', 'input_type': input_type, 'confidence': confidence},
'emotion_family': emotion_data['emotion_family'],
'primary_emotion_code': emotion_data['primary_emotion_code'],
'arc': emotion_data['arc'],
'resonance': emotion_data['resonance'],
'blend': blend,
'trajectory': [emotion_data['primary_emotion_code']],
'confidence': confidence
}
return packet
|