File size: 2,498 Bytes
bcdac9f
 
2a74011
50c656d
98fbb52
bcdac9f
75f30b5
 
 
bcdac9f
75f30b5
 
bcdac9f
75f30b5
 
bcdac9f
 
75f30b5
bcdac9f
 
75f30b5
b0d0fa4
6b769e2
 
 
 
 
 
75f30b5
 
 
 
 
 
 
 
 
 
 
6b769e2
75f30b5
 
 
 
6b769e2
 
75f30b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcdac9f
6b769e2
 
 
 
 
 
 
 
 
 
 
 
bcdac9f
75f30b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from huggingface_hub import InferenceClient
import json

client = InferenceClient("google/gemma-3-27b-it")

def add_message(role, content, messages):
    messages.append({"role": role, "content": content})
    return messages, len(messages), str(messages)

def clear_messages(messages):
    return [], 0, "[]"

def start_conversation(messages, max_tokens, temperature, top_p):
    response = client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=False,
        temperature=temperature,
        top_p=top_p,
    )
    return response.choices[0].message.content

def show_messages(messages):
    return str(messages)

def get_messages_api(messages):
    return json.dumps(messages, indent=4)

demo = gr.Blocks()

with demo:
    gr.Markdown("# Chat Interface")
    role_input = gr.Textbox(label="Role")
    content_input = gr.Textbox(label="Content")
    messages_state = gr.State(value=[])
    messages_output = gr.Textbox(label="Messages", value="[]")
    count_output = gr.Number(label="Count", value=0)
    response_output = gr.Textbox(label="Response")
    messages_api_output = gr.Textbox(label="Messages API")

    add_button = gr.Button("Add")
    clear_button = gr.Button("Clear")
    start_button = gr.Button("Start")
    show_button = gr.Button("Show messages")
    get_api_button = gr.Button("Get messages API")

    max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
    temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
    top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

    add_button.click(
        add_message,
        inputs=[role_input, content_input, messages_state],
        outputs=[messages_state, count_output, messages_output],
    )

    clear_button.click(
        clear_messages,
        inputs=[messages_state],
        outputs=[messages_state, count_output, messages_output],
    )

    start_button.click(
        start_conversation,
        inputs=[messages_state, max_tokens_slider, temperature_slider, top_p_slider],
        outputs=[response_output],
    )

    show_button.click(
        show_messages,
        inputs=[messages_state],
        outputs=[messages_output],
    )

    get_api_button.click(
        get_messages_api,
        inputs=[messages_state],
        outputs=[messages_api_output],
    )

if __name__ == "__main__":
    demo.launch()