File size: 7,343 Bytes
dadf554
851eb76
dadf554
37cdbe8
dadf554
 
 
851eb76
dadf554
 
 
 
 
4a7cbb5
7ccc021
851eb76
dadf554
e54a793
 
 
 
 
851eb76
4a7cbb5
e3011f1
dadf554
37cdbe8
dadf554
 
 
 
7ccc021
dadf554
 
7ccc021
e3011f1
dadf554
a435039
dadf554
 
 
 
 
7ccc021
dadf554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ccc021
4a7cbb5
7ccc021
dadf554
7ccc021
 
 
 
 
 
 
 
 
dadf554
 
e3011f1
dadf554
 
 
 
e3011f1
dadf554
 
 
e3011f1
dadf554
 
 
 
e3011f1
dadf554
eb1b260
dadf554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b2c6ea
dadf554
 
 
 
 
 
 
0f2bf40
851eb76
0f2bf40
851eb76
0f2bf40
dadf554
 
 
 
 
 
7ccc021
dadf554
851eb76
dadf554
851eb76
 
 
0f2bf40
dadf554
 
 
 
 
 
 
7ccc021
 
 
 
4b2c6ea
eb1b260
dadf554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
851eb76
 
 
e1470ef
0f2bf40
ee3fb21
0f2bf40
ee3fb21
851eb76
 
 
ee3fb21
dadf554
 
 
 
4a7cbb5
dadf554
a435039
dadf554
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys


sys.path.append(os.getcwd())

import argparse
import time
from importlib.resources import files

import torch
import torchaudio
from accelerate import Accelerator
from hydra.utils import get_class
from omegaconf import OmegaConf
from tqdm import tqdm

from f5_tts.eval.utils_eval import (
    get_inference_prompt,
    get_librispeech_test_clean_metainfo,
    get_seedtts_testset_metainfo,
)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
from f5_tts.model import CFM
from f5_tts.model.utils import get_tokenizer


accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"


use_ema = True
target_rms = 0.1


rel_path = str(files("f5_tts").joinpath("../../"))


def main():
    parser = argparse.ArgumentParser(description="batch inference")

    parser.add_argument("-s", "--seed", default=None, type=int)
    parser.add_argument("-n", "--expname", required=True)
    parser.add_argument("-c", "--ckptstep", default=1250000, type=int)

    parser.add_argument("-nfe", "--nfestep", default=32, type=int)
    parser.add_argument("-o", "--odemethod", default="euler")
    parser.add_argument("-ss", "--swaysampling", default=-1, type=float)

    parser.add_argument("-t", "--testset", required=True)

    args = parser.parse_args()

    seed = args.seed
    exp_name = args.expname
    ckpt_step = args.ckptstep

    nfe_step = args.nfestep
    ode_method = args.odemethod
    sway_sampling_coef = args.swaysampling

    testset = args.testset

    infer_batch_size = 1  # max frames. 1 for ddp single inference (recommended)
    cfg_strength = 2.0
    speed = 1.0
    use_truth_duration = False
    no_ref_audio = False

    model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
    model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
    model_arc = model_cfg.model.arch

    dataset_name = model_cfg.datasets.name
    tokenizer = model_cfg.model.tokenizer

    mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
    target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
    n_mel_channels = model_cfg.model.mel_spec.n_mel_channels
    hop_length = model_cfg.model.mel_spec.hop_length
    win_length = model_cfg.model.mel_spec.win_length
    n_fft = model_cfg.model.mel_spec.n_fft

    if testset == "ls_pc_test_clean":
        metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
        librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean"  # test-clean path
        metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)

    elif testset == "seedtts_test_zh":
        metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
        metainfo = get_seedtts_testset_metainfo(metalst)

    elif testset == "seedtts_test_en":
        metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
        metainfo = get_seedtts_testset_metainfo(metalst)

    # path to save genereted wavs
    output_dir = (
        f"{rel_path}/"
        f"results/{exp_name}_{ckpt_step}/{testset}/"
        f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
        f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
        f"_cfg{cfg_strength}_speed{speed}"
        f"{'_gt-dur' if use_truth_duration else ''}"
        f"{'_no-ref-audio' if no_ref_audio else ''}"
    )

    # -------------------------------------------------#

    prompts_all = get_inference_prompt(
        metainfo,
        speed=speed,
        tokenizer=tokenizer,
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
        mel_spec_type=mel_spec_type,
        target_rms=target_rms,
        use_truth_duration=use_truth_duration,
        infer_batch_size=infer_batch_size,
    )

    # Vocoder model
    local = False
    if mel_spec_type == "vocos":
        vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
    elif mel_spec_type == "bigvgan":
        vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
    vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)

    # Tokenizer
    vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)

    # Model
    model = CFM(
        transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
        mel_spec_kwargs=dict(
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            n_mel_channels=n_mel_channels,
            target_sample_rate=target_sample_rate,
            mel_spec_type=mel_spec_type,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
    if not os.path.exists(ckpt_path):
        print("Loading from self-organized training checkpoints rather than released pretrained.")
        ckpt_path = rel_path + f"/{model_cfg.ckpts.save_dir}/model_{ckpt_step}.pt"
    dtype = torch.float32 if mel_spec_type == "bigvgan" else None
    model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)

    if not os.path.exists(output_dir) and accelerator.is_main_process:
        os.makedirs(output_dir)

    # start batch inference
    accelerator.wait_for_everyone()
    start = time.time()

    with accelerator.split_between_processes(prompts_all) as prompts:
        for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
            utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
            ref_mels = ref_mels.to(device)
            ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
            total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)

            # Inference
            with torch.inference_mode():
                generated, _ = model.sample(
                    cond=ref_mels,
                    text=final_text_list,
                    duration=total_mel_lens,
                    lens=ref_mel_lens,
                    steps=nfe_step,
                    cfg_strength=cfg_strength,
                    sway_sampling_coef=sway_sampling_coef,
                    no_ref_audio=no_ref_audio,
                    seed=seed,
                )
                # Final result
                for i, gen in enumerate(generated):
                    gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
                    gen_mel_spec = gen.permute(0, 2, 1).to(torch.float32)
                    if mel_spec_type == "vocos":
                        generated_wave = vocoder.decode(gen_mel_spec).cpu()
                    elif mel_spec_type == "bigvgan":
                        generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()

                    if ref_rms_list[i] < target_rms:
                        generated_wave = generated_wave * ref_rms_list[i] / target_rms
                    torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)

    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        timediff = time.time() - start
        print(f"Done batch inference in {timediff / 60:.2f} minutes.")


if __name__ == "__main__":
    main()