Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	File size: 8,657 Bytes
			
			| a858bb2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | import os
from multiprocessing import Pool
import numpy as np
import random
from PIL import Image
import re
import cv2
import glob
from natsort import natsorted
class MultiProcessImageSaver(object):
    def __init__(self, n_workers=1):
        self.pool = Pool(n_workers)
    def __call__(self, images, output_files, resizes=None):
        if resizes is None:
            resizes = [None for _ in range(len(images))]
        return self.pool.imap(
            self.save_image,
            zip(images, output_files, resizes),
        )
    def close(self):
        self.pool.close()
        self.pool.join()
    @staticmethod
    def save_image(args):
        image, filename, resize = args
        image = Image.fromarray(image)
        if resize is not None:
            image = image.resize(tuple(resize))
        image.save(filename)
def list_dir_with_full_path(path):
    return [os.path.join(path, f) for f in os.listdir(path)]
def find_all_files_in_dir(path):
    files = []
    for root, _, files in os.walk(path):
        for file in files:
            files.append(os.path.join(root, file))
    return files
def is_image(path):
    return (
        path.endswith('.jpg')
        or path.endswith('.png')
        or path.endswith('.jpeg')
        or path.endswith('.JPG')
        or path.endswith('.PNG')
        or path.endswith('.JPEG')
    )
def is_video(path):
    return (
        path.endswith('.mp4')
        or path.endswith('.avi')
        or path.endswith('.MP4')
        or path.endswith('.AVI')
        or path.endswith('.webm')
        or path.endswith('.WEBM')
        or path.endswith('.mkv')
        or path.endswith('.MVK')
    )
def random_square_crop(img, random_generator=None):
    # If no random generator is provided, use numpy's default
    if random_generator is None:
        random_generator = np.random.default_rng()
    # Get the width and height of the image
    width, height = img.size
    # Determine the shorter side
    min_size = min(width, height)
    # Randomly determine the starting x and y coordinates for the crop
    if width > height:
        left = random_generator.integers(0, width - min_size)
        upper = 0
    else:
        left = 0
        upper = random_generator.integers(0, height - min_size)
    # Calculate the ending x and y coordinates for the crop
    right = left + min_size
    lower = upper + min_size
    # Crop the image
    return img.crop((left, upper, right, lower))
def read_image_to_tensor(path, center_crop=1.0):
    pil_im = Image.open(path).convert('RGB')
    if center_crop < 1.0:
        width, height = pil_im.size
        pil_im = pil_im.crop((
            int((1 - center_crop) * height / 2), int((1 + center_crop) * height / 2),
            int((1 - center_crop) * width / 2), int((1 + center_crop) * width / 2),
        ))
    input_img = pil_im.resize((256, 256))
    input_img = np.array(input_img) / 255.0
    input_img = input_img.astype(np.float32)
    return input_img
def match_mulitple_path(root_dir, regex):
    videos = []
    for root, _, files in os.walk(root_dir):
        for file in files:
            videos.append(os.path.join(root, file))
    videos = [v for v in videos if not v.split('/')[-1].startswith('.')]
    grouped_path = {}
    for r in regex:
        r = re.compile(r)
        for v in videos:
            matched = r.findall(v)
            if len(matched) > 0:
                groups = matched[0]
                if groups not in grouped_path:
                    grouped_path[groups] = []
                grouped_path[groups].append(v)
    grouped_path = {
        k: tuple(v) for k, v in grouped_path.items()
        if len(v) == len(regex)
    }
    return list(grouped_path.values())
def randomly_subsample_frame_indices(length, n_frames, max_stride=30, random_start=True):
    assert length >= n_frames
    max_stride = min(
        (length - 1) // (n_frames - 1),
        max_stride
    )
    stride = np.random.randint(1, max_stride + 1)
    if random_start:
        start = np.random.randint(0, length - (n_frames - 1) * stride)
    else:
        start = 0
    return np.arange(n_frames) * stride + start
def read_frames_from_dir(dir_path, n_frames, stride, random_start=True, center_crop=1.0):
    files = [os.path.join(dir_path, x) for x in os.listdir(dir_path)]
    files = natsorted([x for x in files if is_image(x)])
    total_frames = len(files)
    if total_frames < n_frames:
        return None
    max_stride = (total_frames - 1) // (n_frames - 1)
    stride = min(max_stride, stride)
    if random_start:
        start = np.random.randint(0, total_frames - (n_frames - 1) * stride)
    else:
        start = 0
    frame_indices = np.arange(n_frames) * stride + start
    frames = []
    for frame_index in sorted(frame_indices):
        # Check if the frame_index is valid
        frames.append(read_image_to_tensor(files[frame_index], center_crop=center_crop))
    if len(frames) < n_frames:
        return None
    frames = np.stack(frames, axis=0)
    return frames
def read_frames_from_video(video_path, n_frames, stride, random_start=True, center_crop=1.0):
    frames = []
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    if total_frames < n_frames:
        cap.release()
        return None
    max_stride = (total_frames - 1) // (n_frames - 1)
    stride = min(max_stride, stride)
    if random_start:
        start = np.random.randint(0, total_frames - (n_frames - 1) * stride)
    else:
        start = 0
    frame_indices = np.arange(n_frames) * stride + start
    for frame_index in sorted(frame_indices):
        # Check if the frame_index is valid
        if 0 <= frame_index < total_frames:
            cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
            ret, frame = cap.read()
            if ret:
                if center_crop < 1.0:
                    height, width, _ = frame.shape
                    frame = frame[
                        int((1 - center_crop) * height / 2):int((1 + center_crop) * height / 2),
                        int((1 - center_crop) * width / 2):int((1 + center_crop) * width / 2),
                        :
                    ]
                frame = cv2.resize(frame, (256, 256))
                frames.append(frame)
        else:
            print(f"Frame index {frame_index} is out of bounds. Skipping...")
    cap.release()
    if len(frames) < n_frames:
        return None
    frames = np.stack(frames, axis=0).astype(np.float32) / 255.0
    # From BGR to RGB
    return np.stack(
        [frames[..., 2], frames[..., 1], frames[..., 0]], axis=-1
    )
def read_all_frames_from_video(video_path, center_crop=1.0):
    frames = []
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    for frame_index in range(total_frames):
        # Check if the frame_index is valid
        if 0 <= frame_index < total_frames:
            cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
            ret, frame = cap.read()
            if ret:
                if center_crop < 1.0:
                    height, width, _ = frame.shape
                    frame = frame[
                        int((1 - center_crop) * height / 2):int((1 + center_crop) * height / 2),
                        int((1 - center_crop) * width / 2):int((1 + center_crop) * width / 2),
                        :
                    ]
                frames.append(cv2.resize(frame, (256, 256)))
        else:
            print(f"Frame index {frame_index} is out of bounds. Skipping...")
    cap.release()
    if len(frames) == 0:
        return None
    frames = np.stack(frames, axis=0).astype(np.float32) / 255.0
    # From BGR to RGB
    return np.stack(
        [frames[..., 2], frames[..., 1], frames[..., 0]], axis=-1
    )
def read_max_span_frames_from_video(video_path, n_frames):
    frames = []
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    if total_frames < n_frames:
        cap.release()
        return None
    stride = (total_frames - 1) // (n_frames - 1)
    frame_indices = np.arange(n_frames) * stride
    frames = []
    for frame_index in frame_indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
        ret, frame = cap.read()
        if ret:
            frames.append(cv2.resize(frame, (256, 256)))
    cap.release()
    if len(frames) < n_frames:
        return None
    frames = np.stack(frames, axis=0).astype(np.float32) / 255.0
    # From BGR to RGB
    return np.stack(
        [frames[..., 2], frames[..., 1], frames[..., 0]], axis=-1
    )
 |