Spaces:
Running
Running
File size: 2,557 Bytes
2694503 f2fa1a5 2694503 80c53a2 f70d981 2694503 ce2abbe f564212 ce2abbe 2694503 ce2abbe 2694503 ce2abbe 6873977 ce2abbe c532af7 5d8c89a ce2abbe 14d3a4a 54b212d 14d3a4a 6873977 14d3a4a ce2abbe 2694503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import os
import streamlit as st
from groq import Groq
from dotenv import load_dotenv
load_dotenv()
def make_call(api):
"""Calls the Groq API (assuming API key auth) and handles potential errors."""
try:
client = Groq(
api_key=api,
) # Configure the model with the API key
query = st.text_input("Enter your query")
prmptquery= f"Act as bhagwan Krishna and answer this query in context to bhagwat geeta, you may also provide reference to shloks from chapters of bhagwat geeta which is relevant to the query. Query= {query}"
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prmptquery,
}
],
model="mixtral-8x7b-32768",
)
# print(response.text) # Return the response for further processing
return chat_completion.choices[0].message.content
except Exception as e:
print(f"API call failed for: {e}")
return None # Indicate failur
api1 = os.getenv("GROQ_API_KEY")
apis = [
api1,
# api1,
]
# Loop indefinitely
data = None
# while True: # Loop indefinitely
for api in apis:
data = make_call(api)
if data: # Check for a successful response
st.write(data)
break # Exit both the for loop and while loop
else:
st.write(f"Failed to retrieve data from.")
# if data: # If a successful response was found, break the outer while loop
# break
# print(chat_completion)
# # Text to 3D
# import streamlit as st
# import torch
# from diffusers import ShapEPipeline
# from diffusers.utils import export_to_gif
# # Model loading (Ideally done once at the start for efficiency)
# ckpt_id = "openai/shap-e"
# @st.cache_resource # Caches the model for faster subsequent runs
# def load_model():
# return ShapEPipeline.from_pretrained(ckpt_id).to("cuda")
# pipe = load_model()
# # App Title
# st.title("Shark 3D Image Generator")
# # User Inputs
# prompt = st.text_input("Enter your prompt:", "a shark")
# guidance_scale = st.slider("Guidance Scale", 0.0, 20.0, 15.0, step=0.5)
# # Generate and Display Images
# if st.button("Generate"):
# with st.spinner("Generating images..."):
# images = pipe(
# prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=64,
# size=256,
# ).images
# gif_path = export_to_gif(images, "shark_3d.gif")
# st.image(images[0]) # Display the first image
# st.success("GIF saved as shark_3d.gif") |