Spaces:
Running
Running
File size: 5,586 Bytes
19d4726 b149299 19d4726 b29b5d8 19d4726 b149299 19d4726 6795b3b 19d4726 b29b5d8 19d4726 b29b5d8 19d4726 b29b5d8 19d4726 b149299 b29b5d8 19d4726 b29b5d8 19d4726 6795b3b 19d4726 b149299 e610b55 b149299 19d4726 b149299 19d4726 b149299 19d4726 e610b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import logging
import os
import tempfile
from pathlib import Path
from typing import List, Tuple
import gradio as gr
import pandas as pd
import spacy
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
from preprocessing import expand_contractions
try:
nlp = spacy.load("pt_core_news_sm")
except Exception:
os.system("python -m spacy download pt_core_news_sm")
nlp = spacy.load("pt_core_news_sm")
model = AutoModelForTokenClassification.from_pretrained("Emanuel/porttagger-news-base")
tokenizer = AutoTokenizer.from_pretrained("Emanuel/porttagger-news-base")
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
def predict(text, nlp, logger=None) -> Tuple[List[str], List[str]]:
doc = nlp(text)
tokens = [token.text for token in doc]
logger.info("Starting predictions for sentence: {}".format(text))
input_tokens = tokenizer(
tokens,
return_tensors="pt",
is_split_into_words=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
)
output = model(input_tokens["input_ids"])
i_token = 0
labels = []
scores = []
for off, is_special_token, pred in zip(
input_tokens["offset_mapping"][0],
input_tokens["special_tokens_mask"][0],
output.logits[0],
):
if is_special_token or off[0] > 0:
continue
label = model.config.__dict__["id2label"][int(pred.argmax(axis=-1))]
if logger is not None:
logger.info("{}, {}, {}".format(off, tokens[i_token], label))
labels.append(label)
scores.append(
"{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max()))
)
i_token += 1
return tokens, labels, scores
def text_analysis(text):
text = expand_contractions(text)
tokens, labels, scores = predict(text, nlp, logger)
pos_count = pd.DataFrame(
{
"token": tokens,
"etiqueta": labels,
"confiança": scores,
}
)
pos_tokens = []
for token, label in zip(tokens, labels):
pos_tokens.extend([(token, label), (" ", None)])
output_highlighted.update(visible=True)
output_df.update(visible=True)
return {
output_highlighted: output_highlighted.update(visible=True, value=(pos_tokens)),
output_df: output_df.update(visible=True, value=pos_count),
}
def batch_analysis(input_file):
text = open(input_file.name, encoding="utf-8").read()
text = text.split("\n")
name = Path(input_file.name).stem
sents = []
for sent in text:
sub_sents = nlp(sent).sents
sub_sents = [str(_sent).strip() for _sent in sub_sents]
sents += sub_sents
conllu_output = []
for i, sent in enumerate(sents):
sent = expand_contractions(sent)
conllu_output.append("# sent_id = {}-{}\n".format(name, i + 1))
conllu_output.append("# text = {}\n".format(sent))
tokens, labels, scores = predict(sent, nlp, logger)
for j, (token, label) in enumerate(zip(tokens, labels)):
conllu_output.append(
"{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 5 + "\n"
)
conllu_output.append("\n")
output_filename = "output.conllu"
with open(output_filename, "w") as out_f:
out_f.writelines(conllu_output)
return {output_file: output_file.update(visible=True, value=output_filename)}
css = open("style.css").read()
top_html = open("top.html").read()
bottom_html = open("bottom.html").read()
with gr.Blocks(css=css) as demo:
gr.HTML(top_html)
with gr.Tab("Single sentence"):
text = gr.Textbox(placeholder="Enter your text here...", label="Input")
examples = gr.Examples(
examples=[
[
"A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações."
],
[
"Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista."
],
],
inputs=[text],
label="Select an example",
)
output_highlighted = gr.HighlightedText(label="Colorful output", visible=False)
output_df = gr.Dataframe(label="Tabular output", visible=False)
submit_btn = gr.Button("Send")
submit_btn.click(
fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df]
)
with gr.Tab("Multiple sentences"):
gr.HTML(
"""
<p>Upload file with raw sentences in it. Below is an example of what we expect the contents of the file to look like.
Sentences are automatically splitted by Spacy's sentencizer.
To force an explicit division, manually separate the sentences on different lines.</p>
"""
)
gr.Markdown(
"""
```
Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou:
– Vá e não tornes a pecar!
Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta.
```
"""
)
input_file = gr.File(label="Upload your input file here...")
output_file = gr.File(visible=False)
submit_btn_batch = gr.Button("Send")
submit_btn_batch.click(
fn=batch_analysis, inputs=input_file, outputs=output_file
)
gr.HTML(bottom_html)
demo.launch(debug=True)
|