File size: 18,339 Bytes
eea2605
 
 
e984b5c
799297b
 
e984b5c
 
 
 
 
2a759eb
e984b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a87d0e8
 
 
 
2a759eb
 
 
e984b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1adddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e45c49
d1adddc
 
 
 
 
 
 
 
3c93d7b
1d40feb
d1adddc
e984b5c
2a759eb
ec77de0
1880628
ec77de0
 
3c93d7b
 
 
 
821b58d
e984b5c
d1adddc
9a34aef
e984b5c
 
 
 
 
 
 
 
 
 
 
 
 
c62bf4d
e984b5c
 
c62bf4d
e984b5c
 
 
 
 
 
 
 
408fc5d
e984b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408fc5d
 
 
e984b5c
408fc5d
e984b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c62bf4d
e984b5c
 
 
9a34aef
e984b5c
 
 
9a34aef
e984b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a759eb
 
a87d0e8
 
e984b5c
 
 
 
 
 
2a759eb
1de7080
 
e984b5c
 
 
 
8828289
 
 
2041e1f
e984b5c
 
2041e1f
e984b5c
 
 
 
 
 
 
 
2041e1f
e984b5c
 
 
 
2041e1f
e984b5c
 
 
 
 
 
8828289
b55c698
8828289
2397336
 
 
 
 
e984b5c
c62bf4d
 
e984b5c
eea2605
fe3881c
c62bf4d
4ee26c5
d1ff662
a4a0791
 
24c84ca
2a759eb
24c84ca
c62bf4d
8828289
e984b5c
 
 
 
3243933
 
 
eea2605
 
10b0dff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
os.system('pip install gradio --upgrade')
os.system('pip freeze')
import torch
torch.hub.download_url_to_file('https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/files/?p=%2Fconfigs%2Fmodel.yaml&dl=1', 'vqgan_imagenet_f16_16384.yaml')
torch.hub.download_url_to_file('https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/files/?p=%2Fckpts%2Flast.ckpt&dl=1', 'vqgan_imagenet_f16_16384.ckpt')
import argparse
import math
from pathlib import Path
import sys
sys.path.insert(1, './taming-transformers')
# from IPython import display
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import taming.modules 
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
from CLIP import clip
import kornia.augmentation as K
import numpy as np
import imageio
from PIL import ImageFile, Image
ImageFile.LOAD_TRUNCATED_IMAGES = True
import gradio as gr
import nvidia_smi
nvidia_smi.nvmlInit()
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
# card id 0 hardcoded here, there is also a call to get all available card ids, so we could iterate
torch.hub.download_url_to_file('https://images.pexels.com/photos/158028/bellingrath-gardens-alabama-landscape-scenic-158028.jpeg', 'garden.jpeg')
torch.hub.download_url_to_file('https://images.pexels.com/photos/68767/divers-underwater-ocean-swim-68767.jpeg', 'coralreef.jpeg')
torch.hub.download_url_to_file('https://images.pexels.com/photos/803975/pexels-photo-803975.jpeg', 'cabin.jpeg')
def sinc(x):
    return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
    cond = torch.logical_and(-a < x, x < a)
    out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
    return out / out.sum()
def ramp(ratio, width):
    n = math.ceil(width / ratio + 1)
    out = torch.empty([n])
    cur = 0
    for i in range(out.shape[0]):
        out[i] = cur
        cur += ratio
    return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
    n, c, h, w = input.shape
    dh, dw = size
    input = input.view([n * c, 1, h, w])
    if dh < h:
        kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
        pad_h = (kernel_h.shape[0] - 1) // 2
        input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
        input = F.conv2d(input, kernel_h[None, None, :, None])
    if dw < w:
        kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
        pad_w = (kernel_w.shape[0] - 1) // 2
        input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
        input = F.conv2d(input, kernel_w[None, None, None, :])
    input = input.view([n, c, h, w])
    return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x_forward, x_backward):
        ctx.shape = x_backward.shape
        return x_forward
    @staticmethod
    def backward(ctx, grad_in):
        return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, min, max):
        ctx.min = min
        ctx.max = max
        ctx.save_for_backward(input)
        return input.clamp(min, max)
    @staticmethod
    def backward(ctx, grad_in):
        input, = ctx.saved_tensors
        return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
    d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
    indices = d.argmin(-1)
    x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
    return replace_grad(x_q, x)
class Prompt(nn.Module):
    def __init__(self, embed, weight=1., stop=float('-inf')):
        super().__init__()
        self.register_buffer('embed', embed)
        self.register_buffer('weight', torch.as_tensor(weight))
        self.register_buffer('stop', torch.as_tensor(stop))
    def forward(self, input):
        input_normed = F.normalize(input.unsqueeze(1), dim=2)
        embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
        dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
        dists = dists * self.weight.sign()
        return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
def parse_prompt(prompt):
    vals = prompt.rsplit(':', 2)
    vals = vals + ['', '1', '-inf'][len(vals):]
    return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, cut_pow=1.):
        super().__init__()
        self.cut_size = cut_size
        self.cutn = cutn
        self.cut_pow = cut_pow
        self.augs = nn.Sequential(
            # K.RandomHorizontalFlip(p=0.5),
            # K.RandomVerticalFlip(p=0.5),
            # K.RandomSolarize(0.01, 0.01, p=0.7),
            # K.RandomSharpness(0.3,p=0.4),
            # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1),  ratio=(0.75,1.333), cropping_mode='resample', p=0.5),
            # K.RandomCrop(size=(self.cut_size,self.cut_size), p=0.5),
            K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border'),
            K.RandomPerspective(0.7,p=0.7),
            K.ColorJitter(hue=0.1, saturation=0.1, p=0.7),
            K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7),
            
)
        self.noise_fac = 0.1
        self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
        self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
    def forward(self, input):
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        cutouts = []
        
        for _ in range(self.cutn):
            # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
            # offsetx = torch.randint(0, sideX - size + 1, ())
            # offsety = torch.randint(0, sideY - size + 1, ())
            # cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
            # cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
            # cutout = transforms.Resize(size=(self.cut_size, self.cut_size))(input)
            
            cutout = (self.av_pool(input) + self.max_pool(input))/2
            cutouts.append(cutout)
        batch = self.augs(torch.cat(cutouts, dim=0))
        if self.noise_fac:
            facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
            batch = batch + facs * torch.randn_like(batch)
        return batch
def load_vqgan_model(config_path, checkpoint_path):
    config = OmegaConf.load(config_path)
    if config.model.target == 'taming.models.vqgan.VQModel':
        model = vqgan.VQModel(**config.model.params)
        model.eval().requires_grad_(False)
        model.init_from_ckpt(checkpoint_path)
    elif config.model.target == 'taming.models.vqgan.GumbelVQ':
        model = vqgan.GumbelVQ(**config.model.params)
        model.eval().requires_grad_(False)
        model.init_from_ckpt(checkpoint_path)
    elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
        parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
        parent_model.eval().requires_grad_(False)
        parent_model.init_from_ckpt(checkpoint_path)
        model = parent_model.first_stage_model
    else:
        raise ValueError(f'unknown model type: {config.model.target}')
    del model.loss
    return model
def resize_image(image, out_size):
    ratio = image.size[0] / image.size[1]
    area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
    size = round((area * ratio)**0.5), round((area / ratio)**0.5)
    return image.resize(size, Image.LANCZOS)
model_name = "vqgan_imagenet_f16_16384" 
images_interval =  50
width =  280
height = 280
init_image = ""
seed = 42
args = argparse.Namespace(
    noise_prompt_seeds=[],
    noise_prompt_weights=[],
    size=[width, height],
    init_image=init_image,
    init_weight=0.,
    clip_model='ViT-B/32',
    vqgan_config=f'{model_name}.yaml',
    vqgan_checkpoint=f'{model_name}.ckpt',
    step_size=0.15,
    cutn=4,
    cut_pow=1.,
    display_freq=images_interval,
    seed=seed,
)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
def inference(text, seed, step_size, max_iterations, width, height, init_image, init_weight, target_images):
    all_frames = []
    size=[width, height]
    texts = text
    init_weight=init_weight
    if init_image:
        init_image = init_image.name
    else:
        init_image = ""
    if target_images:
        target_images = target_images.name
    else:
        target_images = ""
    max_iterations = max_iterations
    model_names={"vqgan_imagenet_f16_16384": 'ImageNet 16384',"vqgan_imagenet_f16_1024":"ImageNet 1024", 'vqgan_openimages_f16_8192':'OpenImages 8912',
                    "wikiart_1024":"WikiArt 1024", "wikiart_16384":"WikiArt 16384", "coco":"COCO-Stuff", "faceshq":"FacesHQ", "sflckr":"S-FLCKR"}
    name_model = model_names[model_name]
    if target_images == "None" or not target_images:
        target_images = []
    else:
        target_images = target_images.split("|")
        target_images = [image.strip() for image in target_images]
    texts = [phrase.strip() for phrase in texts.split("|")]
    if texts == ['']:
        texts = []
    from urllib.request import urlopen
    if texts:
        print('Using texts:', texts)
    if target_images:
        print('Using image prompts:', target_images)
    if seed is None or seed == -1:
        seed = torch.seed()
    else:
        seed = seed
    torch.manual_seed(seed)
    print('Using seed:', seed)
    # clock=deepcopy(perceptor.visual.positional_embedding.data)
    # perceptor.visual.positional_embedding.data = clock/clock.max()
    # perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1)
    cut_size = perceptor.visual.input_resolution
    f = 2**(model.decoder.num_resolutions - 1)
    make_cutouts = MakeCutouts(cut_size, args.cutn, cut_pow=args.cut_pow)
    toksX, toksY = size[0] // f, size[1] // f
    sideX, sideY = toksX * f, toksY * f
    if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
        e_dim = 256
        n_toks = model.quantize.n_embed
        z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None]
        z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None]
    else:
        e_dim = model.quantize.e_dim
        n_toks = model.quantize.n_e
        z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
        z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
    # z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
    # z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
    # normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406],
    #                                            std=[0.229, 0.224, 0.225])
    if init_image:
        if 'http' in init_image:
            img = Image.open(urlopen(init_image))
        else:
            img = Image.open(init_image)
        pil_image = img.convert('RGB')
        pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
        pil_tensor = TF.to_tensor(pil_image)
        z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
    else:
        one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
        # z = one_hot @ model.quantize.embedding.weight
        if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
            z = one_hot @ model.quantize.embed.weight
        else:
            z = one_hot @ model.quantize.embedding.weight
        z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) 
        z = torch.rand_like(z)*2
    z_orig = z.clone()
    z.requires_grad_(True)
    opt = optim.Adam([z], lr=step_size)
    normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                    std=[0.26862954, 0.26130258, 0.27577711])
    pMs = []
    for prompt in texts:
        txt, weight, stop = parse_prompt(prompt)
        embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
        pMs.append(Prompt(embed, weight, stop).to(device))
    for prompt in target_images:
        path, weight, stop = parse_prompt(prompt)
        img = Image.open(path)
        pil_image = img.convert('RGB')
        img = resize_image(pil_image, (sideX, sideY))
        batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
        embed = perceptor.encode_image(normalize(batch)).float()
        pMs.append(Prompt(embed, weight, stop).to(device))
    for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
        gen = torch.Generator().manual_seed(seed)
        embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
        pMs.append(Prompt(embed, weight).to(device))
    def synth(z):
        if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
            z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1)
        else:
            z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
        return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
    @torch.no_grad()
    def checkin(i, losses):
        losses_str = ', '.join(f'{loss.item():g}' for loss in losses)
        tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}')
        out = synth(z)
        # TF.to_pil_image(out[0].cpu()).save('progress.png')
        # display.display(display.Image('progress.png'))
        res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)
        print(f'gpu: {res.gpu}%, gpu-mem: {res.memory}%')
    def ascend_txt():
        # global i
        out = synth(z)
        iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
        
        result = []
        if init_weight:
            result.append(F.mse_loss(z, z_orig) * init_weight / 2)
            #result.append(F.mse_loss(z, torch.zeros_like(z_orig)) * ((1/torch.tensor(i*2 + 1))*init_weight) / 2)
        for prompt in pMs:
            result.append(prompt(iii))
        img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
        img = np.transpose(img, (1, 2, 0))
        # imageio.imwrite('./steps/' + str(i) + '.png', np.array(img))
        img = Image.fromarray(img).convert('RGB')
        all_frames.append(img)
        return result, np.array(img)
    def train(i):
        opt.zero_grad()
        lossAll, image = ascend_txt()
        if i % args.display_freq == 0:
            checkin(i, lossAll)
        
        loss = sum(lossAll)
        loss.backward()
        opt.step()
        with torch.no_grad():
            z.copy_(z.maximum(z_min).minimum(z_max))
        return image
    i = 0
    try:
        with tqdm() as pbar:
            while True:
                image = train(i)
                if i == max_iterations:
                    break
                i += 1
                pbar.update()
    except KeyboardInterrupt:
        pass
    all_frames[0].save('out.gif',
               save_all=True, append_images=all_frames[1:], optimize=False, duration=80, loop=0)
    return image, 'out.gif'
def load_image( infilename ) :
    img = Image.open( infilename )
    img.load()
    data = np.asarray( img, dtype="int32" )
    return data
title = "VQGAN + CLIP"
description = "Gradio demo for VQGAN + CLIP. To use it, simply add your text, or click one of the examples to load them. Read more at the links below. Please click submit only once. Results will show up in under a minute."
article = "<p style='text-align: center'>Originally made by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). The original BigGAN+CLIP method was by https://twitter.com/advadnoun. Added some explanations and modifications by Eleiber#8347, pooling trick by Crimeacs#8222 (https://twitter.com/EarthML1) and the GUI was made with the help of Abulafia#3734. | <a href='https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ'>Colab</a> | <a href='https://github.com/CompVis/taming-transformers'>Taming Transformers Github Repo</a> | <a href='https://github.com/openai/CLIP'>CLIP Github Repo</a> | Special thanks to BoneAmputee (https://twitter.com/BoneAmputee) for suggestions and advice</p>"
gr.Interface(
    inference, 
    [gr.inputs.Textbox(label="Text Input"),
     gr.inputs.Number(default=42, label="seed"),
     gr.inputs.Slider(minimum=0.1, maximum=0.9, default=0.15, label='step size'),
    gr.inputs.Slider(minimum=25, maximum=500, default=80, label='max iterations', step=1),
    gr.inputs.Slider(minimum=200, maximum=600, default=256, label='width', step=1),
    gr.inputs.Slider(minimum=200, maximum=600, default=256, label='height', step=1),
    gr.inputs.Image(type="file", label="Initial Image (Optional)", optional=True),
    gr.inputs.Slider(minimum=0.0, maximum=15.0, default=0.0, label='Initial Weight', step=1.0),
    gr.inputs.Image(type="file", label="Target Image (Optional)", optional=True)
     ], 
    [gr.outputs.Image(type="numpy", label="Output Image"),gr.outputs.Image(type="file", label="Output GIF")],
    title=title,
    description=description,
    article=article,
    examples=[
              ['a garden by james gurney',42,0.16, 100, 256, 256, 'garden.jpeg', 0.0, 'garden.jpeg'],
              ['coral reef city artstationHQ',1000,0.6, 110, 200, 200, 'coralreef.jpeg', 0.0, 'coralreef.jpeg'],
              ['a cabin in the mountains unreal engine',98,0.3, 120, 280, 280, 'cabin.jpeg', 0.0, 'cabin.jpeg']
    ],
    enable_queue=True
    ).launch(debug=True)