File size: 6,491 Bytes
d0f716d
 
 
 
 
 
 
b0f25b3
d0f716d
b0f25b3
aa2aec1
d0f716d
 
 
aa2aec1
d0f716d
 
20b6a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f25b3
aa2aec1
 
 
 
 
20b6a53
 
 
 
 
 
b0f25b3
 
20b6a53
b0f25b3
 
 
 
aa2aec1
b0f25b3
 
 
 
20b6a53
b0f25b3
aa2aec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f25b3
aa2aec1
 
 
 
 
 
 
b0f25b3
 
aa2aec1
 
b0f25b3
aa2aec1
 
b0f25b3
 
 
 
 
 
 
 
 
20b6a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f25b3
 
 
aa2aec1
 
 
 
 
 
b0f25b3
 
 
 
 
 
aa2aec1
 
b0f25b3
 
 
 
 
 
 
 
 
 
 
aa2aec1
b0f25b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
File: calculate_practical_tasks.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Event handler for Gradio app to calculate practical tasks.
License: MIT License
"""

from app.oceanai_init import b5
import gradio as gr
import pandas as pd
from pathlib import Path

# Importing necessary components for the Gradio app
from app.config import config_data
from app.components import html_message, dataframe, files_create_ui, video_create_ui


def read_csv_file(file_path, drop_id=False):
    df = pd.read_csv(file_path)

    if drop_id:
        df = pd.DataFrame(df.drop(["ID"], axis=1))

    df.index.name = "ID"
    df.index += 1
    df.index = df.index.map(str)

    return df


def apply_rounding_and_rename_columns(df):
    df_rounded = df.rename(
        columns={
            "Openness": "OPE",
            "Conscientiousness": "CON",
            "Extraversion": "EXT",
            "Agreeableness": "AGR",
            "Non-Neuroticism": "NNEU",
        }
    )
    columns_to_round = df_rounded.columns[1:]
    df_rounded[columns_to_round] = df_rounded[columns_to_round].apply(
        lambda x: [round(i, 3) for i in x]
    )
    return df_rounded


def colleague_type(subtask):
    return "minor" if "junior" in subtask.lower() else "major"


def event_handler_calculate_practical_task_blocks(
    files,
    practical_subtasks,
    pt_scores,
    threshold_professional_skills,
    dropdown_professional_skills,
    target_score_ope,
    target_score_con,
    target_score_ext,
    target_score_agr,
    target_score_nneu,
    equal_coefficient,
):
    if practical_subtasks.lower() == "professional skills":
        df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)

        b5._priority_skill_calculation(
            df_files=pt_scores.iloc[:, 1:],
            correlation_coefficients=df_professional_skills,
            threshold=threshold_professional_skills,
            out=True,
        )

        # Optional
        df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_)

        professional_skills_list = (
            config_data.Settings_DROPDOWN_PROFESSIONAL_SKILLS.copy()
        )

        professional_skills_list.remove(dropdown_professional_skills)

        professional_skills_list = [
            "OPE",
            "CON",
            "EXT",
            "AGR",
            "NNEU",
        ] + professional_skills_list

        df_hidden = df.drop(columns=professional_skills_list)

        df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)

        df_hidden.reset_index(inplace=True)

        df_hidden = df_hidden.sort_values(
            by=[dropdown_professional_skills], ascending=False
        )

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                config_data.Filenames_PT_SKILLS_SCORES,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_PS,
                True,
                False,
                True,
                "csv-container",
            ),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    elif (
        practical_subtasks.lower() == "finding a suitable junior colleague"
        or practical_subtasks.lower() == "finding a suitable senior colleague"
    ):
        df_correlation_coefficients = read_csv_file(config_data.Links_FINDING_COLLEAGUE)

        b5._colleague_ranking(
            df_files=pt_scores.iloc[:, 1:],
            correlation_coefficients=df_correlation_coefficients,
            target_scores=[
                target_score_ope,
                target_score_con,
                target_score_ext,
                target_score_agr,
                target_score_nneu,
            ],
            colleague=colleague_type(practical_subtasks),
            equal_coefficients=equal_coefficient,
            out=False,
        )

        # Optional
        df = df = apply_rounding_and_rename_columns(b5.df_files_colleague_)

        professional_skills_list = [
            "OPE",
            "CON",
            "EXT",
            "AGR",
            "NNEU",
        ]

        df_hidden = df.drop(columns=professional_skills_list)

        df_hidden.to_csv(
            colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING
        )

        df_hidden.reset_index(inplace=True)

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                colleague_type(practical_subtasks)
                + config_data.Filenames_COLLEAGUE_RANKING,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_WT,
                True,
                False,
                True,
                "csv-container",
            ),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    else:
        gr.Info(config_data.InformationMessages_NOTI_IN_DEV)

        return (
            gr.Row(visible=False),
            gr.Column(visible=False),
            dataframe(visible=False),
            files_create_ui(
                None,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_PS,
                True,
                False,
                False,
                "csv-container",
            ),
            video_create_ui(visible=False),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, True),
        )