File size: 939 Bytes
c7e8622
 
fff5317
c7e8622
1658bdc
 
c7e8622
 
 
 
 
 
 
 
 
fff5317
cc92474
c7e8622
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from tensorflow.keras.preprocessing import image


def predict_image(input_image):
    # Load and preprocess the input image
    img = image.load_img(input_image, target_size=(224, 224))
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = img / 255.0  # Normalize the pixel values (if the model expects it)

    # Make a prediction
    # Load the saved model
    loaded_model = load_model('tumor_model.h5')
    predictions = loaded_model.predict(img)

    # Assuming it's a binary classification model, you can interpret the prediction
    class_names = ['yes', 'no']
    class_index = int(round(predictions[0][0]))
    class_name = class_names[class_index]

    return f'Predicted Class: {class_name}'

iface = gr.Interface(fn=predict_image, inputs="image", outputs="text")
iface.launch(share=True)