File size: 1,136 Bytes
c7e8622
 
c662a40
c7e8622
c662a40
1658bdc
44a0236
c7e8622
a70b7b1
abe5204
 
d34544a
 
abe5204
6462de4
 
abe5204
c476e3f
 
 
 
 
abe5204
6462de4
abe5204
 
 
35fa410
abe5204
 
f14de50
c662a40
 
671b81e
 
 
c662a40
671b81e
 
c7e8622
671b81e
1b96c12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from tensorflow.keras.preprocessing import image



def predict_input_image(img):
    # Normalize the image by cropping (center crop)
    h, w = img.size
    crop_start_x = (w - 224) // 2
    crop_start_y = (h - 224) // 2
    img = img.crop((crop_start_x, crop_start_y, crop_start_x + 224, crop_start_y + 224))
    img = tf.image.resize(img, [224,224])
    img = np.expand_dims(img, axis = 0)

    my_model = load_model('Brain_Tumor_Model.h5')

    # Set a threshold for binary classification
    threshold = 0.5
    
    # Make predictions using your model
    predictions = my_model.predict(img)

    # Convert predictions to binary (0 or 1) based on the threshold
    binary_prediction = 'Tumor Detected' if predictions[0][0] > threshold else 'No Tumor Detected'

    # Print or use the binary prediction as needed
    print("Prediction:", binary_prediction)

    

# Define Gradio interface
iface = gr.Interface(
    fn=predict_input_image,
    inputs= 'image',
    outputs="text",
)

# Launch the interface
iface.launch()