|
import gradio as gr |
|
from haystack.document_stores import FAISSDocumentStore |
|
from haystack.nodes import EmbeddingRetriever |
|
import openai |
|
import os |
|
from utils import ( |
|
make_pairs, |
|
set_openai_api_key, |
|
create_user_id, |
|
to_completion, |
|
) |
|
import numpy as np |
|
from datetime import datetime |
|
from azure.storage.fileshare import ShareServiceClient |
|
|
|
|
|
system_template = {"role": "system", "content": os.environ["content"]} |
|
|
|
openai.api_type = "azure" |
|
openai.api_key = os.environ["api_key"] |
|
openai.api_base = os.environ["ressource_endpoint"] |
|
openai.api_version = "2022-12-01" |
|
|
|
retrieve_all = EmbeddingRetriever( |
|
document_store=FAISSDocumentStore.load( |
|
index_path="./documents/climate_gpt.faiss", |
|
config_path="./documents/climate_gpt.json", |
|
), |
|
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", |
|
model_format="sentence_transformers", |
|
) |
|
|
|
retrieve_giec = EmbeddingRetriever( |
|
document_store=FAISSDocumentStore.load( |
|
index_path="./documents/climate_gpt_only_giec.faiss", |
|
config_path="./documents/climate_gpt_only_giec.json", |
|
), |
|
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", |
|
model_format="sentence_transformers", |
|
) |
|
|
|
credential = { |
|
"account_key": os.environ["account_key"], |
|
"account_name": os.environ["account_name"], |
|
} |
|
|
|
account_url = os.environ["account_url"] |
|
file_share_name = "climategpt" |
|
service = ShareServiceClient(account_url=account_url, credential=credential) |
|
share_client = service.get_share_client(file_share_name) |
|
|
|
|
|
def chat( |
|
user_id: str, |
|
query: str, |
|
history: list = [system_template], |
|
report_type: str = "All available", |
|
threshold: float = 0.555, |
|
) -> tuple: |
|
"""retrieve relevant documents in the document store then query gpt-turbo |
|
|
|
Args: |
|
query (str): user message. |
|
history (list, optional): history of the conversation. Defaults to [system_template]. |
|
report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available". |
|
threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56. |
|
|
|
Yields: |
|
tuple: chat gradio format, chat openai format, sources used. |
|
""" |
|
|
|
if report_type == "All available": |
|
retriever = retrieve_all |
|
elif report_type == "IPCC only": |
|
retriever = retrieve_giec |
|
else: |
|
raise Exception("report_type arg should be in (All available, IPCC only)") |
|
|
|
docs = retriever.retrieve(query=query, top_k=10) |
|
|
|
messages = history + [{"role": "user", "content": query}] |
|
sources = "\n\n".join( |
|
f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}" |
|
for i, d in enumerate(docs, 1) |
|
if d.score > threshold |
|
) |
|
|
|
if sources: |
|
messages.append({"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"}) |
|
|
|
response = openai.Completion.create( |
|
engine="climateGPT", |
|
|
|
prompt=to_completion(messages), |
|
temperature=0.2, |
|
stream=True, |
|
) |
|
|
|
if sources: |
|
complete_response = "" |
|
messages.pop() |
|
else: |
|
sources = "No environmental report was used to provide this answer." |
|
complete_response = ( |
|
"No relevant documents found, for a sourced answer you may want to try a more specific question.\n\n" |
|
) |
|
|
|
messages.append({"role": "assistant", "content": complete_response}) |
|
timestamp = str(datetime.now().timestamp()) |
|
file = user_id[0] + timestamp + ".json" |
|
logs = { |
|
"user_id": user_id[0], |
|
"prompt": query, |
|
"retrived": sources, |
|
"report_type": report_type, |
|
"prompt_eng": messages[0], |
|
"answer": messages[-1]["content"], |
|
"time": timestamp, |
|
} |
|
log_on_azure(file, logs, share_client) |
|
|
|
for chunk in response: |
|
|
|
if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>": |
|
complete_response += chunk_message |
|
messages[-1]["content"] = complete_response |
|
gradio_format = make_pairs([a["content"] for a in messages[1:]]) |
|
yield gradio_format, messages, sources |
|
|
|
|
|
def save_feedback(feed: str, user_id): |
|
if len(feed) > 1: |
|
timestamp = str(datetime.now().timestamp()) |
|
file = user_id[0] + timestamp + ".json" |
|
logs = { |
|
"user_id": user_id[0], |
|
"feedback": feed, |
|
"time": timestamp, |
|
} |
|
log_on_azure(file, logs, share_client) |
|
return "Thanks for your feedbacks" |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value="") |
|
|
|
|
|
def log_on_azure(file, logs, share_client): |
|
file_client = share_client.get_file_client(file) |
|
file_client.upload_file(str(logs)) |
|
|
|
|
|
|
|
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}" |
|
with gr.Blocks(title="๐ ClimateGPT Ekimetrics", css=css_code) as demo: |
|
|
|
user_id = create_user_id(10) |
|
user_id_state = gr.State([user_id]) |
|
|
|
with gr.Tab("App"): |
|
gr.Markdown("# Welcome to Climate GPT ๐ !") |
|
gr.Markdown( |
|
""" Climate GPT is an interactive exploration tool designed to help you easily find relevant information based on of Environmental reports such as IPCCs and other environmental reports. |
|
\n **How does it work:** when a user sends a message, the system retrieves the most relevant paragraphs from scientific reports that are semantically related to the user's question. These paragraphs are then used to generate a comprehensive and well-sourced answer using a language model. |
|
\n **Usage guideline:** more sources will be retrieved using precise questions. |
|
\n โ ๏ธ Always refer to the source to ensure the validity of the information communicated. |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(elem_id="chatbot") |
|
state = gr.State([system_template]) |
|
|
|
with gr.Row(): |
|
ask = gr.Textbox( |
|
show_label=False, |
|
placeholder="Enter text and press enter", |
|
sample_inputs=["which country polutes the most ?"], |
|
).style(container=False) |
|
|
|
with gr.Column(scale=1, variant="panel"): |
|
gr.Markdown("### Sources") |
|
sources_textbox = gr.Textbox(interactive=False, show_label=False, max_lines=50) |
|
ask.submit( |
|
fn=chat, |
|
inputs=[ |
|
user_id_state, |
|
ask, |
|
state, |
|
gr.inputs.Dropdown( |
|
["IPCC only", "All available"], |
|
default="All available", |
|
label="Select reports", |
|
), |
|
], |
|
outputs=[chatbot, state, sources_textbox], |
|
) |
|
ask.submit(reset_textbox, [], [ask]) |
|
|
|
with gr.Accordion("Feedbacks", open=False): |
|
gr.Markdown("Please complete some feedbacks ๐") |
|
feedback = gr.Textbox() |
|
feedback_save = gr.Button(value="submit feedback") |
|
|
|
feedback_save.click( |
|
save_feedback, |
|
inputs=[feedback, user_id_state], |
|
) |
|
|
|
with gr.Accordion("Add your personal openai api key - Option", open=False): |
|
openai_api_key_textbox = gr.Textbox( |
|
placeholder="Paste your OpenAI API key (sk-...) and hit Enter", |
|
show_label=False, |
|
lines=1, |
|
type="password", |
|
) |
|
openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox]) |
|
openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox]) |
|
|
|
with gr.Tab("Information"): |
|
gr.Markdown( |
|
""" |
|
## ๐ Reports used : \n |
|
- First Assessment Report on the Physical Science of Climate Change |
|
- Second assessment Report on Climate Change Adaptation |
|
- Third Assessment Report on Climate Change Mitigation |
|
- Food Outlook Biannual Report on Global Food Markets |
|
- IEA's report on the Role of Critical Minerals in Clean Energy Transitions |
|
- Limits to Growth |
|
- Outside The Safe operating system of the Planetary Boundary for Novel Entities |
|
- Planetary Boundaries Guiding |
|
- State of the Oceans report |
|
- Word Energy Outlook 2021 |
|
- Word Energy Outlook 2022 |
|
- The environmental impacts of plastics and micro plastics use, waste and polution ET=U and national measures |
|
- IPBES Global report - MArch 2022 |
|
|
|
\n |
|
IPCC is a United Nations body that assesses the science related to climate change, including its impacts and possible response options. |
|
The IPCC is considered the leading scientific authority on all things related to global climate change. |
|
|
|
""" |
|
) |
|
with gr.Tab("Examples"): |
|
gr.Markdown("See here some examples on how to use the Chatbot") |
|
|
|
demo.queue(concurrency_count=16) |
|
|
|
demo.launch() |
|
|