clé azure ekimetrics
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from utils import (
|
|
7 |
make_pairs,
|
8 |
set_openai_api_key,
|
9 |
create_user_id,
|
|
|
10 |
)
|
11 |
import numpy as np
|
12 |
from datetime import datetime
|
@@ -15,6 +16,11 @@ from azure.storage.fileshare import ShareServiceClient
|
|
15 |
|
16 |
system_template = {"role": "system", "content": os.environ["content"]}
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
retrieve_all = EmbeddingRetriever(
|
19 |
document_store=FAISSDocumentStore.load(
|
20 |
index_path="./documents/climate_gpt.faiss",
|
@@ -49,7 +55,7 @@ def chat(
|
|
49 |
query: str,
|
50 |
history: list = [system_template],
|
51 |
report_type: str = "All available",
|
52 |
-
threshold: float = 0.
|
53 |
) -> tuple:
|
54 |
"""retrieve relevant documents in the document store then query gpt-turbo
|
55 |
|
@@ -80,23 +86,24 @@ def chat(
|
|
80 |
)
|
81 |
|
82 |
if sources:
|
83 |
-
messages.append(
|
84 |
-
{"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"}
|
85 |
-
)
|
86 |
|
87 |
-
response = openai.
|
88 |
-
|
89 |
-
messages=messages,
|
|
|
90 |
temperature=0.2,
|
91 |
stream=True,
|
92 |
)
|
93 |
|
94 |
if sources:
|
95 |
-
messages.pop()
|
96 |
complete_response = ""
|
|
|
97 |
else:
|
98 |
sources = "No environmental report was used to provide this answer."
|
99 |
-
complete_response =
|
|
|
|
|
100 |
|
101 |
messages.append({"role": "assistant", "content": complete_response})
|
102 |
timestamp = str(datetime.now().timestamp())
|
@@ -113,7 +120,8 @@ def chat(
|
|
113 |
log_on_azure(file, logs, share_client)
|
114 |
|
115 |
for chunk in response:
|
116 |
-
if chunk_message := chunk["choices"][0]["delta"].get("content"
|
|
|
117 |
complete_response += chunk_message
|
118 |
messages[-1]["content"] = complete_response
|
119 |
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
@@ -144,10 +152,8 @@ def log_on_azure(file, logs, share_client):
|
|
144 |
|
145 |
# Gradio
|
146 |
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}"
|
147 |
-
|
148 |
with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:
|
149 |
|
150 |
-
openai.api_key = os.environ["api_key"]
|
151 |
user_id = create_user_id(10)
|
152 |
user_id_state = gr.State([user_id])
|
153 |
|
@@ -174,9 +180,7 @@ with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:
|
|
174 |
|
175 |
with gr.Column(scale=1, variant="panel"):
|
176 |
gr.Markdown("### Sources")
|
177 |
-
sources_textbox = gr.Textbox(
|
178 |
-
interactive=False, show_label=False, max_lines=50
|
179 |
-
)
|
180 |
ask.submit(
|
181 |
fn=chat,
|
182 |
inputs=[
|
@@ -210,12 +214,8 @@ with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:
|
|
210 |
lines=1,
|
211 |
type="password",
|
212 |
)
|
213 |
-
openai_api_key_textbox.change(
|
214 |
-
|
215 |
-
)
|
216 |
-
openai_api_key_textbox.submit(
|
217 |
-
set_openai_api_key, inputs=[openai_api_key_textbox]
|
218 |
-
)
|
219 |
|
220 |
with gr.Tab("Information"):
|
221 |
gr.Markdown(
|
|
|
7 |
make_pairs,
|
8 |
set_openai_api_key,
|
9 |
create_user_id,
|
10 |
+
to_completion,
|
11 |
)
|
12 |
import numpy as np
|
13 |
from datetime import datetime
|
|
|
16 |
|
17 |
system_template = {"role": "system", "content": os.environ["content"]}
|
18 |
|
19 |
+
openai.api_type = "azure"
|
20 |
+
openai.api_key = os.environ["api_key"]
|
21 |
+
openai.api_base = os.environ["ressource_endpoint"]
|
22 |
+
openai.api_version = "2022-12-01"
|
23 |
+
|
24 |
retrieve_all = EmbeddingRetriever(
|
25 |
document_store=FAISSDocumentStore.load(
|
26 |
index_path="./documents/climate_gpt.faiss",
|
|
|
55 |
query: str,
|
56 |
history: list = [system_template],
|
57 |
report_type: str = "All available",
|
58 |
+
threshold: float = 0.555,
|
59 |
) -> tuple:
|
60 |
"""retrieve relevant documents in the document store then query gpt-turbo
|
61 |
|
|
|
86 |
)
|
87 |
|
88 |
if sources:
|
89 |
+
messages.append({"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"})
|
|
|
|
|
90 |
|
91 |
+
response = openai.Completion.create(
|
92 |
+
engine="climateGPT",
|
93 |
+
# messages=messages,
|
94 |
+
prompt=to_completion(messages),
|
95 |
temperature=0.2,
|
96 |
stream=True,
|
97 |
)
|
98 |
|
99 |
if sources:
|
|
|
100 |
complete_response = ""
|
101 |
+
messages.pop()
|
102 |
else:
|
103 |
sources = "No environmental report was used to provide this answer."
|
104 |
+
complete_response = (
|
105 |
+
"No relevant documents found, for a sourced answer you may want to try a more specific question.\n\n"
|
106 |
+
)
|
107 |
|
108 |
messages.append({"role": "assistant", "content": complete_response})
|
109 |
timestamp = str(datetime.now().timestamp())
|
|
|
120 |
log_on_azure(file, logs, share_client)
|
121 |
|
122 |
for chunk in response:
|
123 |
+
# if chunk_message := chunk["choices"][0]["delta"].get("content"):
|
124 |
+
if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
|
125 |
complete_response += chunk_message
|
126 |
messages[-1]["content"] = complete_response
|
127 |
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
|
|
152 |
|
153 |
# Gradio
|
154 |
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}"
|
|
|
155 |
with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:
|
156 |
|
|
|
157 |
user_id = create_user_id(10)
|
158 |
user_id_state = gr.State([user_id])
|
159 |
|
|
|
180 |
|
181 |
with gr.Column(scale=1, variant="panel"):
|
182 |
gr.Markdown("### Sources")
|
183 |
+
sources_textbox = gr.Textbox(interactive=False, show_label=False, max_lines=50)
|
|
|
|
|
184 |
ask.submit(
|
185 |
fn=chat,
|
186 |
inputs=[
|
|
|
214 |
lines=1,
|
215 |
type="password",
|
216 |
)
|
217 |
+
openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
|
218 |
+
openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
|
|
|
|
|
|
|
|
|
219 |
|
220 |
with gr.Tab("Information"):
|
221 |
gr.Markdown(
|
utils.py
CHANGED
@@ -59,3 +59,11 @@ def create_user_id(length):
|
|
59 |
letters = string.ascii_lowercase
|
60 |
user_id = "".join(random.choice(letters) for i in range(length))
|
61 |
return user_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
letters = string.ascii_lowercase
|
60 |
user_id = "".join(random.choice(letters) for i in range(length))
|
61 |
return user_id
|
62 |
+
|
63 |
+
|
64 |
+
def to_completion(messages):
|
65 |
+
s = []
|
66 |
+
for message in messages:
|
67 |
+
s.append(f"<|im_start|>{message['role']}\n{message['content']}<|im_end|>")
|
68 |
+
s.append("<|im_start|>assistant\n")
|
69 |
+
return "\n".join(s)
|