Spaces:
Runtime error
Runtime error
File size: 17,417 Bytes
f49b1cc 5dd3935 f49b1cc 5dd3935 f49b1cc 5dd3935 f49b1cc 5dd3935 f49b1cc 5dd3935 f49b1cc 5dd3935 f49b1cc 5dd3935 f49b1cc 5c718d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
from PIL import Image
import matplotlib as mpl
from utils import prep_for_plot
import torch.multiprocessing
import torchvision.transforms as T
from utils_gee import extract_img, transform_ee_img
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
from plotly.subplots import make_subplots
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
cmap = mpl.colors.ListedColormap(colors)
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
scores_init = [1,2,4,3,4,1,0]
# Function that look for img on EE and segment it
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
def segment_loc(model, location, month, year, how = "month", month_end = '12', year_end = None) :
if how == 'month':
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
elif how == 'year' :
if year_end == None :
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
else :
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
img_test= transform_ee_img(img, max = 0.25)
# Preprocess opened img
x = preprocess(img_test)
x = torch.unsqueeze(x, dim=0).cpu()
# model=model.cpu()
with torch.no_grad():
feats, code = model.net(x)
linear_preds = model.linear_probe(x, code)
linear_preds = linear_preds.argmax(1)
outputs = {
'img': x[:model.cfg.n_images].detach().cpu(),
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
}
return outputs
# Function that look for all img on EE and extract all segments with the date as first output arg
def segment_group(location, start_date, end_date, how = 'month') :
outputs = []
st_month = int(start_date[5:7])
end_month = int(end_date[5:7])
st_year = int(start_date[0:4])
end_year = int(end_date[0:4])
for year in range(st_year, end_year+1) :
if year != end_year :
last = 12
else :
last = end_month
if year != st_year:
start = 1
else :
start = st_month
if how == 'month' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
elif how == 'year' :
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
elif how == '2months' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
month_end = (month) % 12 +1
if month_end < month :
year_end = year +1
else :
year_end = year
month_end= f"{month_end:0>2d}"
year_end = str(year_end)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
return outputs
def values_from_output(output):
imgs = transform_to_pil(output, alpha = 0.3)
img = imgs[0]
img = np.array(img.convert('RGB'))
labeled_img = imgs[2]
labeled_img = np.array(labeled_img.convert('RGB'))
nb_values = []
for i in range(7):
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
return img, labeled_img, nb_values, score
# Function that extract from outputs (from segment_group function) all dates/ all images
def values_from_outputs(outputs) :
months = []
imgs = []
imgs_label = []
nb_values = []
scores = []
for output in outputs:
img, labeled_img, nb_value, score = values_from_output(output[1])
months.append(output[0])
imgs.append(img)
imgs_label.append(labeled_img)
nb_values.append(nb_value)
scores.append(score)
return months, imgs, imgs_label, nb_values, scores
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
# Scores
scatters = []
temp = []
for score in scores :
temp_score = []
temp_date = []
score = scores[i]
temp.append(score)
text_temp = ["" for i in temp]
text_temp[-1] = str(round(score,2))
scatters.append(go.Scatter(x=text_temp, y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
# Scores
fig = make_subplots(
rows=1, cols=4,
# specs=[[{"rowspan": 2}, {"rowspan": 2}, {"type": "pie"}, None]]
# row_heights=[0.8, 0.2],
column_widths = [0.6, 0.6,0.3, 0.3],
subplot_titles=("Localisation visualization", "labeled visualisation", "Segments repartition", "Biodiversity scores")
)
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
fig.add_trace(go.Pie(labels = class_names,
values = nb_values[0],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
row=1, col=3)
fig.add_trace(scatters[0], row=1, col=4)
# fig.add_annotation(text='score:' + str(scores[0]),
# showarrow=False,
# row=2, col=2)
number_frames = len(imgs)
frames = [dict(
name = k,
data = [ fig2["frames"][k]["data"][0],
fig3["frames"][k]["data"][0],
go.Pie(labels = class_names,
values = nb_values[k],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
scatters[k]
],
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
# that are updated by the above three go.Scatter instances
) for k in range(number_frames)]
updatemenus = [dict(type='buttons',
buttons=[dict(label='Play',
method='animate',
args=[[f'{k}' for k in range(number_frames)],
dict(frame=dict(duration=500, redraw=False),
transition=dict(duration=0),
easing='linear',
fromcurrent=True,
mode='immediate'
)])],
direction= 'left',
pad=dict(r= 10, t=85),
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
]
sliders = [{'yanchor': 'top',
'xanchor': 'left',
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
'transition': {'duration': 500.0, 'easing': 'linear'},
'pad': {'b': 10, 't': 50},
'len': 0.9, 'x': 0.1, 'y': 0,
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
'transition': {'duration': 0, 'easing': 'linear'}}],
'label': months[k], 'method': 'animate'} for k in range(number_frames)
]}]
fig.update(frames=frames)
for i,fr in enumerate(fig["frames"]):
fr.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000]
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0]
},
})
fr.update(layout_title_text= months[i])
fig.update(layout_title_text= 'tot')
fig.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis3": {
"range": [0,len(scores)+1],
'autorange': False, # thin lines in the background
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False
},
"yaxis3": {
"range": [0,1.5],
'autorange': False,
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False # thin lines in the background
}
},
legend=dict(
yanchor="bottom",
y=0.99,
xanchor="center",
x=0.01
)
)
fig.update_layout(updatemenus=updatemenus,
sliders=sliders)
fig.update_layout(margin=dict(b=0, r=0))
# fig.show() #in jupyter notebook
return fig
# Last function (global one)
# how = 'month' or '2months' or 'year'
def segment_region(location, start_date, end_date, how = 'month'):
#extract the outputs for each image
outputs = segment_group(location, start_date, end_date, how = how)
#extract the intersting values from image
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
#Create the figure
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
return fig
#normalize img
preprocess = T.Compose([
T.ToPILImage(),
T.Resize((320,320)),
# T.CenterCrop(224),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# Function that look for img on EE and segment it
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
def segment_loc(model,location, month, year, how = "month", month_end = '12', year_end = None) :
if how == 'month':
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
elif how == 'year' :
if year_end == None :
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
else :
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
img_test= transform_ee_img(img, max = 0.25)
# Preprocess opened img
x = preprocess(img_test)
x = torch.unsqueeze(x, dim=0).cpu()
# model=model.cpu()
with torch.no_grad():
feats, code = model.net(x)
linear_preds = model.linear_probe(x, code)
linear_preds = linear_preds.argmax(1)
outputs = {
'img': x[:model.cfg.n_images].detach().cpu(),
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
}
return outputs
# Function that look for all img on EE and extract all segments with the date as first output arg
def segment_group(location, start_date, end_date, how = 'month') :
outputs = []
st_month = int(start_date[5:7])
end_month = int(end_date[5:7])
st_year = int(start_date[0:4])
end_year = int(end_date[0:4])
for year in range(st_year, end_year+1) :
if year != end_year :
last = 12
else :
last = end_month
if year != st_year:
start = 1
else :
start = st_month
if how == 'month' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
elif how == 'year' :
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
elif how == '2months' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
month_end = (month) % 12 +1
if month_end < month :
year_end = year +1
else :
year_end = year
month_end= f"{month_end:0>2d}"
year_end = str(year_end)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
return outputs
# Function that transforms an output to PIL images
def transform_to_pil(outputs,alpha=0.3):
# Transform img with torch
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
img=T.ToPILImage()(img)
# Transform label by saving it then open it
# label = outputs['linear_preds'][0]
# plt.imsave('label.png',label,cmap=cmap)
# label = Image.open('label.png')
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
labels = np.array(outputs['linear_preds'][0])-1
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
# Overlay labels with img wit alpha
background = img.convert("RGBA")
overlay = label.convert("RGBA")
labeled_img = Image.blend(background, overlay, alpha)
return img, label, labeled_img
def values_from_output(output):
imgs = transform_to_pil(output,alpha = 0.3)
img = imgs[0]
img = np.array(img.convert('RGB'))
labeled_img = imgs[2]
labeled_img = np.array(labeled_img.convert('RGB'))
nb_values = []
for i in range(7):
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
return img, labeled_img, nb_values, score
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
# Function that extract from outputs (from segment_group function) all dates/ all images
def values_from_outputs(outputs) :
months = []
imgs = []
imgs_label = []
nb_values = []
scores = []
for output in outputs:
img, labeled_img, nb_value, score = values_from_output(output[1])
months.append(output[0])
imgs.append(img)
imgs_label.append(labeled_img)
nb_values.append(nb_value)
scores.append(score)
return months, imgs, imgs_label, nb_values, scores
# Last function (global one)
# how = 'month' or '2months' or 'year'
def segment_region(latitude, longitude, start_date, end_date, how = 'month'):
location = [float(latitude),float(longitude)]
how = how[0]
#extract the outputs for each image
outputs = segment_group(location, start_date, end_date, how = how)
#extract the intersting values from image
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
print(months, imgs, imgs_label, nb_values, scores)
#Create the figure
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
return fig |