File size: 15,013 Bytes
5c718d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import collections
import os
from os.path import join
import io

import matplotlib.pyplot as plt
import numpy as np
import torch.multiprocessing
import torch.nn as nn
import torch.nn.functional as F
import wget
from PIL import Image
from scipy.optimize import linear_sum_assignment
from torch._six import string_classes
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format
from torchmetrics import Metric
from torchvision import models
from torchvision import transforms as T
from torch.utils.tensorboard.summary import hparams
import matplotlib as mpl
torch.multiprocessing.set_sharing_strategy("file_system")
colors = ("red", "palegreen", "green", "steelblue", "blue", "yellow", "lightgrey")
class_names = (
    "Buildings",
    "Cultivation",
    "Natural green",
    "Wetland",
    "Water",
    "Infrastructure",
    "Background",
)
bounds = list(np.arange(len(class_names) + 1) + 1)
cmap = mpl.colors.ListedColormap(colors)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)

def compute_biodiv_score(image):
    """Compute the biodiversity score of an image

    Args:
        image (_type_): _description_

    Returns:
        biodiversity_score: the biodiversity score associated to the landscape of the image
    """
    pix = np.array(image.getdata())
    return np.mean(pix)

import cv2
def create_video(array_images, output_path="output.mp4"):
    height, width, layers = array_images[0].shape
    size = (width,height)
    
    fourcc = cv2.VideoWriter_fourcc(*'VP90')
    out = cv2.VideoWriter('output.mp4', fourcc, 2, size)
 
    for i in range(len(array_images)):
        out.write(array_images[i])
    out.release()
    return out



def transform_to_pil(outputs, alpha=0.3):
    """Turn an ouput into a PIL

    Args:
        outputs (_type_): _description_
        alpha (float, optional): _description_. Defaults to 0.3.

    Returns:
        _type_: _description_
    """
    
    # Transform img with torch
    img = torch.moveaxis(prep_for_plot(outputs["img"][0]), -1, 0)
    img = T.ToPILImage()(img)
    # Transform label by saving it then open it
    label = outputs["linear_preds"][0].numpy()
    # image_label = Image.fromarray(label, mode="P")
    plt.imsave("output/label.png", label, cmap=cmap)
    image_label = Image.open("output/label.png")
    # Overlay labels with img wit alpha
    background = img.convert("RGBA")
    overlay = image_label.convert("RGBA")
    labeled_img = Image.blend(background, overlay, alpha)
    labeled_img = labeled_img.convert("RGB")
    return img, image_label, labeled_img


def prep_for_plot(img, rescale=True, resize=None):
    if resize is not None:
        img = F.interpolate(img.unsqueeze(0), resize, mode="bilinear")
    else:
        img = img.unsqueeze(0)

    plot_img = unnorm(img).squeeze(0).cpu().permute(1, 2, 0)
    if rescale:
        plot_img = (plot_img - plot_img.min()) / (plot_img.max() - plot_img.min())
    return plot_img


def add_plot(writer, name, step):
    buf = io.BytesIO()
    plt.savefig(buf, format='jpeg', dpi=100)
    buf.seek(0)
    image = Image.open(buf)
    image = T.ToTensor()(image)
    writer.add_image(name, image, step)
    plt.clf()
    plt.close()


@torch.jit.script
def shuffle(x):
    return x[torch.randperm(x.shape[0])]


def add_hparams_fixed(writer, hparam_dict, metric_dict, global_step):
    exp, ssi, sei = hparams(hparam_dict, metric_dict)
    writer.file_writer.add_summary(exp)
    writer.file_writer.add_summary(ssi)
    writer.file_writer.add_summary(sei)
    for k, v in metric_dict.items():
        writer.add_scalar(k, v, global_step)


@torch.jit.script
def resize(classes: torch.Tensor, size: int):
    return F.interpolate(classes, (size, size), mode="bilinear", align_corners=False)


def one_hot_feats(labels, n_classes):
    return F.one_hot(labels, n_classes).permute(0, 3, 1, 2).to(torch.float32)


def load_model(model_type, data_dir):
    if model_type == "robust_resnet50":
        model = models.resnet50(pretrained=False)
        model_file = join(data_dir, 'imagenet_l2_3_0.pt')
        if not os.path.exists(model_file):
            wget.download("http://6.869.csail.mit.edu/fa19/psets19/pset6/imagenet_l2_3_0.pt",
                          model_file)
        model_weights = torch.load(model_file)
        model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
                                  'model' in name}
        model.load_state_dict(model_weights_modified)
        model = nn.Sequential(*list(model.children())[:-1])
    elif model_type == "densecl":
        model = models.resnet50(pretrained=False)
        model_file = join(data_dir, 'densecl_r50_coco_1600ep.pth')
        if not os.path.exists(model_file):
            wget.download("https://cloudstor.aarnet.edu.au/plus/s/3GapXiWuVAzdKwJ/download",
                          model_file)
        model_weights = torch.load(model_file)
        # model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
        #                          'model' in name}
        model.load_state_dict(model_weights['state_dict'], strict=False)
        model = nn.Sequential(*list(model.children())[:-1])
    elif model_type == "resnet50":
        model = models.resnet50(pretrained=True)
        model = nn.Sequential(*list(model.children())[:-1])
    elif model_type == "mocov2":
        model = models.resnet50(pretrained=False)
        model_file = join(data_dir, 'moco_v2_800ep_pretrain.pth.tar')
        if not os.path.exists(model_file):
            wget.download("https://dl.fbaipublicfiles.com/moco/moco_checkpoints/"
                          "moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar", model_file)
        checkpoint = torch.load(model_file)
        # rename moco pre-trained keys
        state_dict = checkpoint['state_dict']
        for k in list(state_dict.keys()):
            # retain only encoder_q up to before the embedding layer
            if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
                # remove prefix
                state_dict[k[len("module.encoder_q."):]] = state_dict[k]
            # delete renamed or unused k
            del state_dict[k]
        msg = model.load_state_dict(state_dict, strict=False)
        assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
        model = nn.Sequential(*list(model.children())[:-1])
    elif model_type == "densenet121":
        model = models.densenet121(pretrained=True)
        model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
    elif model_type == "vgg11":
        model = models.vgg11(pretrained=True)
        model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
    else:
        raise ValueError("No model: {} found".format(model_type))

    model.eval()
    model.cuda()
    return model


class UnNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image2 = torch.clone(image)
        for t, m, s in zip(image2, self.mean, self.std):
            t.mul_(s).add_(m)
        return image2


normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])


class ToTargetTensor(object):
    def __call__(self, target):
        return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)


def prep_args():
    import sys

    old_args = sys.argv
    new_args = [old_args.pop(0)]
    while len(old_args) > 0:
        arg = old_args.pop(0)
        if len(arg.split("=")) == 2:
            new_args.append(arg)
        elif arg.startswith("--"):
            new_args.append(arg[2:] + "=" + old_args.pop(0))
        else:
            raise ValueError("Unexpected arg style {}".format(arg))
    sys.argv = new_args


def get_transform(res, is_label, crop_type):
    if crop_type == "center":
        cropper = T.CenterCrop(res)
    elif crop_type == "random":
        cropper = T.RandomCrop(res)
    elif crop_type is None:
        cropper = T.Lambda(lambda x: x)
        res = (res, res)
    else:
        raise ValueError("Unknown Cropper {}".format(crop_type))
    if is_label:
        return T.Compose([T.Resize(res, Image.NEAREST),
                          cropper,
                          ToTargetTensor()])
    else:
        return T.Compose([T.Resize(res, Image.NEAREST),
                          cropper,
                          T.ToTensor(),
                          normalize])


def _remove_axes(ax):
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    ax.yaxis.set_major_formatter(plt.NullFormatter())
    ax.set_xticks([])
    ax.set_yticks([])


def remove_axes(axes):
    if len(axes.shape) == 2:
        for ax1 in axes:
            for ax in ax1:
                _remove_axes(ax)
    else:
        for ax in axes:
            _remove_axes(ax)


class UnsupervisedMetrics(Metric):
    def __init__(self, prefix: str, n_classes: int, extra_clusters: int, compute_hungarian: bool,
                 dist_sync_on_step=True):
        # call `self.add_state`for every internal state that is needed for the metrics computations
        # dist_reduce_fx indicates the function that should be used to reduce
        # state from multiple processes
        super().__init__(dist_sync_on_step=dist_sync_on_step)

        self.n_classes = n_classes
        self.extra_clusters = extra_clusters
        self.compute_hungarian = compute_hungarian
        self.prefix = prefix
        self.add_state("stats",
                       default=torch.zeros(n_classes + self.extra_clusters, n_classes, dtype=torch.int64),
                       dist_reduce_fx="sum")

    def update(self, preds: torch.Tensor, target: torch.Tensor):
        with torch.no_grad():
            actual = target.reshape(-1)
            preds = preds.reshape(-1)
            mask = (actual >= 0) & (actual < self.n_classes) & (preds >= 0) & (preds < self.n_classes)
            actual = actual[mask]
            preds = preds[mask]
            self.stats += torch.bincount(
                (self.n_classes + self.extra_clusters) * actual + preds,
                minlength=self.n_classes * (self.n_classes + self.extra_clusters)) \
                .reshape(self.n_classes, self.n_classes + self.extra_clusters).t().to(self.stats.device)

    def map_clusters(self, clusters):
        if self.extra_clusters == 0:
            return torch.tensor(self.assignments[1])[clusters]
        else:
            missing = sorted(list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0])))
            cluster_to_class = self.assignments[1]
            for missing_entry in missing:
                if missing_entry == cluster_to_class.shape[0]:
                    cluster_to_class = np.append(cluster_to_class, -1)
                else:
                    cluster_to_class = np.insert(cluster_to_class, missing_entry + 1, -1)
            cluster_to_class = torch.tensor(cluster_to_class)
            return cluster_to_class[clusters]

    def compute(self):
        if self.compute_hungarian:
            self.assignments = linear_sum_assignment(self.stats.detach().cpu(), maximize=True)
            # print(self.assignments)
            if self.extra_clusters == 0:
                self.histogram = self.stats[np.argsort(self.assignments[1]), :]
            if self.extra_clusters > 0:
                self.assignments_t = linear_sum_assignment(self.stats.detach().cpu().t(), maximize=True)
                histogram = self.stats[self.assignments_t[1], :]
                missing = list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0]))
                new_row = self.stats[missing, :].sum(0, keepdim=True)
                histogram = torch.cat([histogram, new_row], axis=0)
                new_col = torch.zeros(self.n_classes + 1, 1, device=histogram.device)
                self.histogram = torch.cat([histogram, new_col], axis=1)
        else:
            self.assignments = (torch.arange(self.n_classes).unsqueeze(1),
                                torch.arange(self.n_classes).unsqueeze(1))
            self.histogram = self.stats

        tp = torch.diag(self.histogram)
        fp = torch.sum(self.histogram, dim=0) - tp
        fn = torch.sum(self.histogram, dim=1) - tp

        iou = tp / (tp + fp + fn)
        prc = tp / (tp + fn)
        opc = torch.sum(tp) / torch.sum(self.histogram)

        metric_dict = {self.prefix + "mIoU": iou[~torch.isnan(iou)].mean().item(),
                       self.prefix + "Accuracy": opc.item()}
        return {k: 100 * v for k, v in metric_dict.items()}


def flexible_collate(batch):
    r"""Puts each data field into a tensor with outer dimension batch size"""

    elem = batch[0]
    elem_type = type(elem)
    if isinstance(elem, torch.Tensor):
        out = None
        if torch.utils.data.get_worker_info() is not None:
            # If we're in a background process, concatenate directly into a
            # shared memory tensor to avoid an extra copy
            numel = sum([x.numel() for x in batch])
            storage = elem.storage()._new_shared(numel)
            out = elem.new(storage)
        try:
            return torch.stack(batch, 0, out=out)
        except RuntimeError:
            return batch
    elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
            and elem_type.__name__ != 'string_':
        if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
            # array of string classes and object
            if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
                raise TypeError(default_collate_err_msg_format.format(elem.dtype))

            return flexible_collate([torch.as_tensor(b) for b in batch])
        elif elem.shape == ():  # scalars
            return torch.as_tensor(batch)
    elif isinstance(elem, float):
        return torch.tensor(batch, dtype=torch.float64)
    elif isinstance(elem, int):
        return torch.tensor(batch)
    elif isinstance(elem, string_classes):
        return batch
    elif isinstance(elem, collections.abc.Mapping):
        return {key: flexible_collate([d[key] for d in batch]) for key in elem}
    elif isinstance(elem, tuple) and hasattr(elem, '_fields'):  # namedtuple
        return elem_type(*(flexible_collate(samples) for samples in zip(*batch)))
    elif isinstance(elem, collections.abc.Sequence):
        # check to make sure that the elements in batch have consistent size
        it = iter(batch)
        elem_size = len(next(it))
        if not all(len(elem) == elem_size for elem in it):
            raise RuntimeError('each element in list of batch should be of equal size')
        transposed = zip(*batch)
        return [flexible_collate(samples) for samples in transposed]

    raise TypeError(default_collate_err_msg_format.format(elem_type))