Spaces:
Runtime error
Runtime error
File size: 15,013 Bytes
5c718d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import collections
import os
from os.path import join
import io
import matplotlib.pyplot as plt
import numpy as np
import torch.multiprocessing
import torch.nn as nn
import torch.nn.functional as F
import wget
from PIL import Image
from scipy.optimize import linear_sum_assignment
from torch._six import string_classes
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format
from torchmetrics import Metric
from torchvision import models
from torchvision import transforms as T
from torch.utils.tensorboard.summary import hparams
import matplotlib as mpl
torch.multiprocessing.set_sharing_strategy("file_system")
colors = ("red", "palegreen", "green", "steelblue", "blue", "yellow", "lightgrey")
class_names = (
"Buildings",
"Cultivation",
"Natural green",
"Wetland",
"Water",
"Infrastructure",
"Background",
)
bounds = list(np.arange(len(class_names) + 1) + 1)
cmap = mpl.colors.ListedColormap(colors)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
def compute_biodiv_score(image):
"""Compute the biodiversity score of an image
Args:
image (_type_): _description_
Returns:
biodiversity_score: the biodiversity score associated to the landscape of the image
"""
pix = np.array(image.getdata())
return np.mean(pix)
import cv2
def create_video(array_images, output_path="output.mp4"):
height, width, layers = array_images[0].shape
size = (width,height)
fourcc = cv2.VideoWriter_fourcc(*'VP90')
out = cv2.VideoWriter('output.mp4', fourcc, 2, size)
for i in range(len(array_images)):
out.write(array_images[i])
out.release()
return out
def transform_to_pil(outputs, alpha=0.3):
"""Turn an ouput into a PIL
Args:
outputs (_type_): _description_
alpha (float, optional): _description_. Defaults to 0.3.
Returns:
_type_: _description_
"""
# Transform img with torch
img = torch.moveaxis(prep_for_plot(outputs["img"][0]), -1, 0)
img = T.ToPILImage()(img)
# Transform label by saving it then open it
label = outputs["linear_preds"][0].numpy()
# image_label = Image.fromarray(label, mode="P")
plt.imsave("output/label.png", label, cmap=cmap)
image_label = Image.open("output/label.png")
# Overlay labels with img wit alpha
background = img.convert("RGBA")
overlay = image_label.convert("RGBA")
labeled_img = Image.blend(background, overlay, alpha)
labeled_img = labeled_img.convert("RGB")
return img, image_label, labeled_img
def prep_for_plot(img, rescale=True, resize=None):
if resize is not None:
img = F.interpolate(img.unsqueeze(0), resize, mode="bilinear")
else:
img = img.unsqueeze(0)
plot_img = unnorm(img).squeeze(0).cpu().permute(1, 2, 0)
if rescale:
plot_img = (plot_img - plot_img.min()) / (plot_img.max() - plot_img.min())
return plot_img
def add_plot(writer, name, step):
buf = io.BytesIO()
plt.savefig(buf, format='jpeg', dpi=100)
buf.seek(0)
image = Image.open(buf)
image = T.ToTensor()(image)
writer.add_image(name, image, step)
plt.clf()
plt.close()
@torch.jit.script
def shuffle(x):
return x[torch.randperm(x.shape[0])]
def add_hparams_fixed(writer, hparam_dict, metric_dict, global_step):
exp, ssi, sei = hparams(hparam_dict, metric_dict)
writer.file_writer.add_summary(exp)
writer.file_writer.add_summary(ssi)
writer.file_writer.add_summary(sei)
for k, v in metric_dict.items():
writer.add_scalar(k, v, global_step)
@torch.jit.script
def resize(classes: torch.Tensor, size: int):
return F.interpolate(classes, (size, size), mode="bilinear", align_corners=False)
def one_hot_feats(labels, n_classes):
return F.one_hot(labels, n_classes).permute(0, 3, 1, 2).to(torch.float32)
def load_model(model_type, data_dir):
if model_type == "robust_resnet50":
model = models.resnet50(pretrained=False)
model_file = join(data_dir, 'imagenet_l2_3_0.pt')
if not os.path.exists(model_file):
wget.download("http://6.869.csail.mit.edu/fa19/psets19/pset6/imagenet_l2_3_0.pt",
model_file)
model_weights = torch.load(model_file)
model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
'model' in name}
model.load_state_dict(model_weights_modified)
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "densecl":
model = models.resnet50(pretrained=False)
model_file = join(data_dir, 'densecl_r50_coco_1600ep.pth')
if not os.path.exists(model_file):
wget.download("https://cloudstor.aarnet.edu.au/plus/s/3GapXiWuVAzdKwJ/download",
model_file)
model_weights = torch.load(model_file)
# model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
# 'model' in name}
model.load_state_dict(model_weights['state_dict'], strict=False)
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "resnet50":
model = models.resnet50(pretrained=True)
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "mocov2":
model = models.resnet50(pretrained=False)
model_file = join(data_dir, 'moco_v2_800ep_pretrain.pth.tar')
if not os.path.exists(model_file):
wget.download("https://dl.fbaipublicfiles.com/moco/moco_checkpoints/"
"moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar", model_file)
checkpoint = torch.load(model_file)
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
# remove prefix
state_dict[k[len("module.encoder_q."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "densenet121":
model = models.densenet121(pretrained=True)
model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
elif model_type == "vgg11":
model = models.vgg11(pretrained=True)
model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
else:
raise ValueError("No model: {} found".format(model_type))
model.eval()
model.cuda()
return model
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image):
image2 = torch.clone(image)
for t, m, s in zip(image2, self.mean, self.std):
t.mul_(s).add_(m)
return image2
normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
class ToTargetTensor(object):
def __call__(self, target):
return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)
def prep_args():
import sys
old_args = sys.argv
new_args = [old_args.pop(0)]
while len(old_args) > 0:
arg = old_args.pop(0)
if len(arg.split("=")) == 2:
new_args.append(arg)
elif arg.startswith("--"):
new_args.append(arg[2:] + "=" + old_args.pop(0))
else:
raise ValueError("Unexpected arg style {}".format(arg))
sys.argv = new_args
def get_transform(res, is_label, crop_type):
if crop_type == "center":
cropper = T.CenterCrop(res)
elif crop_type == "random":
cropper = T.RandomCrop(res)
elif crop_type is None:
cropper = T.Lambda(lambda x: x)
res = (res, res)
else:
raise ValueError("Unknown Cropper {}".format(crop_type))
if is_label:
return T.Compose([T.Resize(res, Image.NEAREST),
cropper,
ToTargetTensor()])
else:
return T.Compose([T.Resize(res, Image.NEAREST),
cropper,
T.ToTensor(),
normalize])
def _remove_axes(ax):
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_xticks([])
ax.set_yticks([])
def remove_axes(axes):
if len(axes.shape) == 2:
for ax1 in axes:
for ax in ax1:
_remove_axes(ax)
else:
for ax in axes:
_remove_axes(ax)
class UnsupervisedMetrics(Metric):
def __init__(self, prefix: str, n_classes: int, extra_clusters: int, compute_hungarian: bool,
dist_sync_on_step=True):
# call `self.add_state`for every internal state that is needed for the metrics computations
# dist_reduce_fx indicates the function that should be used to reduce
# state from multiple processes
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.n_classes = n_classes
self.extra_clusters = extra_clusters
self.compute_hungarian = compute_hungarian
self.prefix = prefix
self.add_state("stats",
default=torch.zeros(n_classes + self.extra_clusters, n_classes, dtype=torch.int64),
dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
with torch.no_grad():
actual = target.reshape(-1)
preds = preds.reshape(-1)
mask = (actual >= 0) & (actual < self.n_classes) & (preds >= 0) & (preds < self.n_classes)
actual = actual[mask]
preds = preds[mask]
self.stats += torch.bincount(
(self.n_classes + self.extra_clusters) * actual + preds,
minlength=self.n_classes * (self.n_classes + self.extra_clusters)) \
.reshape(self.n_classes, self.n_classes + self.extra_clusters).t().to(self.stats.device)
def map_clusters(self, clusters):
if self.extra_clusters == 0:
return torch.tensor(self.assignments[1])[clusters]
else:
missing = sorted(list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0])))
cluster_to_class = self.assignments[1]
for missing_entry in missing:
if missing_entry == cluster_to_class.shape[0]:
cluster_to_class = np.append(cluster_to_class, -1)
else:
cluster_to_class = np.insert(cluster_to_class, missing_entry + 1, -1)
cluster_to_class = torch.tensor(cluster_to_class)
return cluster_to_class[clusters]
def compute(self):
if self.compute_hungarian:
self.assignments = linear_sum_assignment(self.stats.detach().cpu(), maximize=True)
# print(self.assignments)
if self.extra_clusters == 0:
self.histogram = self.stats[np.argsort(self.assignments[1]), :]
if self.extra_clusters > 0:
self.assignments_t = linear_sum_assignment(self.stats.detach().cpu().t(), maximize=True)
histogram = self.stats[self.assignments_t[1], :]
missing = list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0]))
new_row = self.stats[missing, :].sum(0, keepdim=True)
histogram = torch.cat([histogram, new_row], axis=0)
new_col = torch.zeros(self.n_classes + 1, 1, device=histogram.device)
self.histogram = torch.cat([histogram, new_col], axis=1)
else:
self.assignments = (torch.arange(self.n_classes).unsqueeze(1),
torch.arange(self.n_classes).unsqueeze(1))
self.histogram = self.stats
tp = torch.diag(self.histogram)
fp = torch.sum(self.histogram, dim=0) - tp
fn = torch.sum(self.histogram, dim=1) - tp
iou = tp / (tp + fp + fn)
prc = tp / (tp + fn)
opc = torch.sum(tp) / torch.sum(self.histogram)
metric_dict = {self.prefix + "mIoU": iou[~torch.isnan(iou)].mean().item(),
self.prefix + "Accuracy": opc.item()}
return {k: 100 * v for k, v in metric_dict.items()}
def flexible_collate(batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
try:
return torch.stack(batch, 0, out=out)
except RuntimeError:
return batch
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return flexible_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, collections.abc.Mapping):
return {key: flexible_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(flexible_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = zip(*batch)
return [flexible_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))
|