Spaces:
Runtime error
Runtime error
File size: 27,418 Bytes
f49b1cc 5c718d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
from PIL import Image
import hydra
import matplotlib as mpl
from utils import prep_for_plot
import torch.multiprocessing
import torchvision.transforms as T
# import matplotlib.pyplot as plt
from model import LitUnsupervisedSegmenter
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
cmap = mpl.colors.ListedColormap(colors)
#from train_segmentation import LitUnsupervisedSegmenter, cmap
from utils_gee import extract_img, transform_ee_img
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
from plotly.subplots import make_subplots
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
scores_init = [2,3,4,3,1,4,0]
# Import model configs
hydra.initialize(config_path="configs", job_name="corine")
cfg = hydra.compose(config_name="my_train_config.yml")
nbclasses = cfg.dir_dataset_n_classes
# Load Model
model_path = "biomap/checkpoint/model/model.pt"
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
model = LitUnsupervisedSegmenter(nbclasses, cfg)
model.load_state_dict(saved_state_dict)
from PIL import Image
import hydra
from utils import prep_for_plot
import torch.multiprocessing
import torchvision.transforms as T
# import matplotlib.pyplot as plt
from model import LitUnsupervisedSegmenter
from utils_gee import extract_img, transform_ee_img
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
from plotly.subplots import make_subplots
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
cmap = mpl.colors.ListedColormap(colors)
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
scores_init = [2,3,4,3,1,4,0]
# Import model configs
#hydra.initialize(config_path="configs", job_name="corine")
cfg = hydra.compose(config_name="my_train_config.yml")
nbclasses = cfg.dir_dataset_n_classes
# Load Model
model_path = "biomap/checkpoint/model/model.pt"
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
model = LitUnsupervisedSegmenter(nbclasses, cfg)
model.load_state_dict(saved_state_dict)
#normalize img
preprocess = T.Compose([
T.ToPILImage(),
T.Resize((320,320)),
# T.CenterCrop(224),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# Function that look for img on EE and segment it
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
if how == 'month':
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
elif how == 'year' :
if year_end == None :
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
else :
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
img_test= transform_ee_img(img, max = 0.25)
# Preprocess opened img
x = preprocess(img_test)
x = torch.unsqueeze(x, dim=0).cpu()
# model=model.cpu()
with torch.no_grad():
feats, code = model.net(x)
linear_preds = model.linear_probe(x, code)
linear_preds = linear_preds.argmax(1)
outputs = {
'img': x[:model.cfg.n_images].detach().cpu(),
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
}
return outputs
# Function that look for all img on EE and extract all segments with the date as first output arg
def segment_group(location, start_date, end_date, how = 'month') :
outputs = []
st_month = int(start_date[5:7])
end_month = int(end_date[5:7])
st_year = int(start_date[0:4])
end_year = int(end_date[0:4])
for year in range(st_year, end_year+1) :
if year != end_year :
last = 12
else :
last = end_month
if year != st_year:
start = 1
else :
start = st_month
if how == 'month' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
elif how == 'year' :
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
elif how == '2months' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
month_end = (month) % 12 +1
if month_end < month :
year_end = year +1
else :
year_end = year
month_end= f"{month_end:0>2d}"
year_end = str(year_end)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
return outputs
# Function that transforms an output to PIL images
def transform_to_pil(outputs,alpha=0.3):
# Transform img with torch
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
img=T.ToPILImage()(img)
# Transform label by saving it then open it
# label = outputs['linear_preds'][0]
# plt.imsave('label.png',label,cmap=cmap)
# label = Image.open('label.png')
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
labels = np.array(outputs['linear_preds'][0])-1
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
# Overlay labels with img wit alpha
background = img.convert("RGBA")
overlay = label.convert("RGBA")
labeled_img = Image.blend(background, overlay, alpha)
return img, label, labeled_img
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
def values_from_output(output):
imgs = transform_to_pil(output,alpha = 0.3)
img = imgs[0]
img = np.array(img.convert('RGB'))
labeled_img = imgs[2]
labeled_img = np.array(labeled_img.convert('RGB'))
nb_values = []
for i in range(7):
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
return img, labeled_img, nb_values, score
# Function that extract from outputs (from segment_group function) all dates/ all images
def values_from_outputs(outputs) :
months = []
imgs = []
imgs_label = []
nb_values = []
scores = []
for output in outputs:
img, labeled_img, nb_value, score = values_from_output(output[1])
months.append(output[0])
imgs.append(img)
imgs_label.append(labeled_img)
nb_values.append(nb_value)
scores.append(score)
return months, imgs, imgs_label, nb_values, scores
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
# Scores
scatters = []
temp = []
for score in scores :
temp_score = []
temp_date = []
score = scores[i]
temp.append(score)
text_temp = ["" for i in temp]
text_temp[-1] = str(round(score,2))
scatters.append(go.Scatter(x=text_temp, y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
# Scores
fig = make_subplots(
rows=1, cols=4,
# specs=[[{"rowspan": 2}, {"rowspan": 2}, {"type": "pie"}, None]]
# row_heights=[0.8, 0.2],
column_widths = [0.6, 0.6,0.3, 0.3],
subplot_titles=("Localisation visualization", "labeled visualisation", "Segments repartition", "Biodiversity scores")
)
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
fig.add_trace(go.Pie(labels = class_names,
values = nb_values[0],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
row=1, col=3)
fig.add_trace(scatters[0], row=1, col=4)
# fig.add_annotation(text='score:' + str(scores[0]),
# showarrow=False,
# row=2, col=2)
number_frames = len(imgs)
frames = [dict(
name = k,
data = [ fig2["frames"][k]["data"][0],
fig3["frames"][k]["data"][0],
go.Pie(labels = class_names,
values = nb_values[k],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
scatters[k]
],
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
# that are updated by the above three go.Scatter instances
) for k in range(number_frames)]
updatemenus = [dict(type='buttons',
buttons=[dict(label='Play',
method='animate',
args=[[f'{k}' for k in range(number_frames)],
dict(frame=dict(duration=500, redraw=False),
transition=dict(duration=0),
easing='linear',
fromcurrent=True,
mode='immediate'
)])],
direction= 'left',
pad=dict(r= 10, t=85),
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
]
sliders = [{'yanchor': 'top',
'xanchor': 'left',
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
'transition': {'duration': 500.0, 'easing': 'linear'},
'pad': {'b': 10, 't': 50},
'len': 0.9, 'x': 0.1, 'y': 0,
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
'transition': {'duration': 0, 'easing': 'linear'}}],
'label': months[k], 'method': 'animate'} for k in range(number_frames)
]}]
fig.update(frames=frames)
for i,fr in enumerate(fig["frames"]):
fr.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000]
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0]
},
})
fr.update(layout_title_text= months[i])
fig.update(layout_title_text= 'tot')
fig.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis3": {
"range": [0,len(scores)+1],
'autorange': False, # thin lines in the background
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False
},
"yaxis3": {
"range": [0,1.5],
'autorange': False,
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False # thin lines in the background
}
},
legend=dict(
yanchor="bottom",
y=0.99,
xanchor="center",
x=0.01
)
)
fig.update_layout(updatemenus=updatemenus,
sliders=sliders)
fig.update_layout(margin=dict(b=0, r=0))
# fig.show() #in jupyter notebook
return fig
# Last function (global one)
# how = 'month' or '2months' or 'year'
def segment_region(location, start_date, end_date, how = 'month'):
#extract the outputs for each image
outputs = segment_group(location, start_date, end_date, how = how)
#extract the intersting values from image
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
#Create the figure
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
return fig
#normalize img
preprocess = T.Compose([
T.ToPILImage(),
T.Resize((320,320)),
# T.CenterCrop(224),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# Function that look for img on EE and segment it
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
if how == 'month':
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
elif how == 'year' :
if year_end == None :
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
else :
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
img_test= transform_ee_img(img, max = 0.25)
# Preprocess opened img
x = preprocess(img_test)
x = torch.unsqueeze(x, dim=0).cpu()
# model=model.cpu()
with torch.no_grad():
feats, code = model.net(x)
linear_preds = model.linear_probe(x, code)
linear_preds = linear_preds.argmax(1)
outputs = {
'img': x[:model.cfg.n_images].detach().cpu(),
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
}
return outputs
# Function that look for all img on EE and extract all segments with the date as first output arg
def segment_group(location, start_date, end_date, how = 'month') :
outputs = []
st_month = int(start_date[5:7])
end_month = int(end_date[5:7])
st_year = int(start_date[0:4])
end_year = int(end_date[0:4])
for year in range(st_year, end_year+1) :
if year != end_year :
last = 12
else :
last = end_month
if year != st_year:
start = 1
else :
start = st_month
if how == 'month' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
elif how == 'year' :
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
elif how == '2months' :
for month in range(start, last + 1):
month_str = f"{month:0>2d}"
year_str = str(year)
month_end = (month) % 12 +1
if month_end < month :
year_end = year +1
else :
year_end = year
month_end= f"{month_end:0>2d}"
year_end = str(year_end)
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
return outputs
# Function that transforms an output to PIL images
def transform_to_pil(outputs,alpha=0.3):
# Transform img with torch
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
img=T.ToPILImage()(img)
# Transform label by saving it then open it
# label = outputs['linear_preds'][0]
# plt.imsave('label.png',label,cmap=cmap)
# label = Image.open('label.png')
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
labels = np.array(outputs['linear_preds'][0])-1
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
# Overlay labels with img wit alpha
background = img.convert("RGBA")
overlay = label.convert("RGBA")
labeled_img = Image.blend(background, overlay, alpha)
return img, label, labeled_img
def values_from_output(output):
imgs = transform_to_pil(output,alpha = 0.3)
img = imgs[0]
img = np.array(img.convert('RGB'))
labeled_img = imgs[2]
labeled_img = np.array(labeled_img.convert('RGB'))
nb_values = []
for i in range(7):
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
return img, labeled_img, nb_values, score
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
# Function that extract from outputs (from segment_group function) all dates/ all images
def values_from_outputs(outputs) :
months = []
imgs = []
imgs_label = []
nb_values = []
scores = []
for output in outputs:
img, labeled_img, nb_value, score = values_from_output(output[1])
months.append(output[0])
imgs.append(img)
imgs_label.append(labeled_img)
nb_values.append(nb_value)
scores.append(score)
return months, imgs, imgs_label, nb_values, scores
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
# Scores
scatters = []
temp = []
for score in scores :
temp_score = []
temp_date = []
#score = scores[i]
temp.append(score)
n = len(temp)
text_temp = ["" for i in temp]
text_temp[-1] = str(round(score,2))
scatters.append(go.Scatter(x=[0,1], y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
print(text_temp)
# Scores
fig = make_subplots(
rows=1, cols=4,
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
)
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
fig.add_trace(go.Pie(labels = class_names,
values = nb_values[0],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
row=1, col=3)
fig.add_trace(scatters[0], row=1, col=4)
fig.update_traces(showlegend=False, selector=dict(type='scatter'))
#fig.update_traces(, selector=dict(type='scatter'))
# fig.add_annotation(text='score:' + str(scores[0]),
# showarrow=False,
# row=2, col=2)
number_frames = len(imgs)
frames = [dict(
name = k,
data = [ fig2["frames"][k]["data"][0],
fig3["frames"][k]["data"][0],
go.Pie(labels = class_names,
values = nb_values[k],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
scatters[k]
],
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
# that are updated by the above three go.Scatter instances
) for k in range(number_frames)]
updatemenus = [dict(type='buttons',
buttons=[dict(label='Play',
method='animate',
args=[[f'{k}' for k in range(number_frames)],
dict(frame=dict(duration=500, redraw=False),
transition=dict(duration=0),
easing='linear',
fromcurrent=True,
mode='immediate'
)])],
direction= 'left',
pad=dict(r= 10, t=85),
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
]
sliders = [{'yanchor': 'top',
'xanchor': 'left',
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
'transition': {'duration': 500.0, 'easing': 'linear'},
'pad': {'b': 10, 't': 50},
'len': 0.9, 'x': 0.1, 'y': 0,
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
'transition': {'duration': 0, 'easing': 'linear'}}],
'label': months[k], 'method': 'animate'} for k in range(number_frames)
]}]
fig.update(frames=frames)
for i,fr in enumerate(fig["frames"]):
fr.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000]
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0]
},
})
fr.update(layout_title_text= months[i])
fig.update(layout_title_text= months[0])
fig.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis2": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis2": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis3": {
"range": [0,len(scores)+1],
'autorange': False, # thin lines in the background
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False
},
"yaxis3": {
"range": [0,1.5],
'autorange': False,
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False # thin lines in the background
}
}
)
fig.update_layout(updatemenus=updatemenus,
sliders=sliders,
legend=dict(
yanchor= 'top',
xanchor= 'left',
orientation="h")
)
fig.update_layout(margin=dict(b=0, r=0))
# fig.show() #in jupyter notebook
return fig
# Last function (global one)
# how = 'month' or '2months' or 'year'
def segment_region(latitude, longitude, start_date, end_date, how = 'month'):
location = [float(latitude),float(longitude)]
how = how[0]
#extract the outputs for each image
outputs = segment_group(location, start_date, end_date, how = how)
#extract the intersting values from image
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
#Create the figure
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
return fig |