File size: 1,553 Bytes
3eed03b
 
 
a200dd4
3eed03b
 
 
 
 
 
 
 
 
 
 
a200dd4
 
3eed03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c2e966
 
 
 
3eed03b
 
 
 
 
 
 
 
 
 
5e2686d
3eed03b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from dotenv import load_dotenv
import os

from transformers import BlenderbotSmallForConditionalGeneration, AutoTokenizer
from helpers import in_cache

from fastapi import FastAPI
from pydantic import BaseModel
import redis

from starlette.middleware.cors import CORSMiddleware


load_dotenv()

model = BlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M", cache_dir="new_cache_dir/")
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M", cache_dir="new_cache_dir/")
class UserMSGRequest(BaseModel):
    message: str
    
r = redis.Redis(
  host='eu2-suitable-cod-32440.upstash.io',
  port=32440,
  password=os.getenv('UPSTASH_REDIS_PWD'),
  ssl=True
)

app = FastAPI()

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/status")
def status ():
    return {"status": "OK"}

@app.post("/generate-message")
async def root(utterance: UserMSGRequest):
    key_list = r.keys()
    is_in_cache = in_cache(utterance.message, key_list)
    if is_in_cache.status:
        print("From Cache!")
        return r.get(is_in_cache.closest_match)
    inputs = tokenizer(utterance.message, return_tensors = "pt")
    results = model.generate(**inputs)
    response = tokenizer.batch_decode(results, skip_special_tokens=True)[0]
    r.set(utterance.message, response, 250)
    return response

if __name__ == '__main__':
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8080)