File size: 7,938 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3

###################################################################
# Use this script to extract polygons from binary masks using a model trained for this task.
# I used it to polygonize the original ground truth masks from the Inria Aerial Image Labeling Dataset.
# The first step is to train a network whose input is a binary mask and output is a segmentation + frame field.
# I did this on rasterized OSM annotation corresponding to the Inria dataset
# (so that there is a ground truth for the frame field).
###################################################################


import argparse
import sys
import os
import numpy as np
import torch_lydorn
from tqdm import tqdm
import skimage.io
import torch

try:
    __import__("frame_field_learning.local_utils")
except ImportError:
    print("ERROR: The frame_field_learning package is not installed! "
          "Execute script setup.sh to install local dependencies such as frame_field_learning in develop mode.")
    exit()

from frame_field_learning import data_transforms, polygonize_asm, save_utils, polygonize_acm, measures
from frame_field_learning.model import FrameFieldModel
from frame_field_learning import inference
from frame_field_learning import local_utils

from torch_lydorn import torchvision
from lydorn_utils import run_utils, geo_utils, polygon_utils
from lydorn_utils import print_utils

from backbone import get_backbone

# polygonize_config = {
#     "data_level": 0.5,
#     "step_thresholds": [0, 500],  # From 0 to 500: gradually go from coefs[0] to coefs[1]
#     "data_coefs": [0.9, 0.09],
#     "length_coefs": [0.1, 0.01],
#     "crossfield_coefs": [0.0, 0.05],
#     "poly_lr": 0.1,
#     "device": "cuda",
#     "tolerance": 0.001,
#     "seg_threshold": 0.5,
#     "min_area": 10,
# }
polygonize_config = {
    "steps": 500,
    "data_level": 0.5,
    "data_coef": 0.1,
    "length_coef": 0.4,
    "crossfield_coef": 0.5,
    "poly_lr": 0.01,
    "warmup_iters": 100,
    "warmup_factor": 0.1,
    "device": "cuda",
    "tolerance": 0.5,
    "seg_threshold": 0.5,
    "min_area": 10
}


def get_args():
    argparser = argparse.ArgumentParser(description=__doc__)
    argparser.add_argument(
        '-f', '--filepath',
        required=True,
        type=str,
        nargs='*',
        help='Filepaths to the binary images to polygonize.')

    argparser.add_argument(
        '-r', '--runs_dirpath',
        default="runs",
        type=str,
        help='Directory where runs are recorded (model saves and logs).')

    argparser.add_argument(
        '--run_name',
        required=True,
        type=str,
        help='Name of the run to use for predicting the frame field needed by the polygonization algorithm.'
             'That name does not include the timestamp of the folder name: <run_name> | <yyyy-mm-dd hh:mm:ss>.')
    argparser.add_argument(
        '--eval_patch_size',
        type=int,
        help='When evaluating, patch size the tile split into.')
    argparser.add_argument(
        '--eval_patch_overlap',
        type=int,
        help='When evaluating, patch the tile with the specified overlap to reduce edge artifacts when reconstructing '
             'the whole tile')
    argparser.add_argument(
        '--out_ext',
        type=str,
        default="geojson",
        choices=['geojson', 'shp'],
        help="File extension of the output geometry. 'geojson': GeoJSON,  'shp': shapefile")

    args = argparser.parse_args()
    return args


def polygonize_mask(config, mask_filepaths, backbone, out_ext):
    """
    Reads
    @param args:
    @return:
    """

    # --- Online transform performed on the device (GPU):
    eval_online_cuda_transform = data_transforms.get_eval_online_cuda_transform(config)

    print("Loading model...")
    model = FrameFieldModel(config, backbone=backbone, eval_transform=eval_online_cuda_transform)
    model.to(config["device"])
    checkpoints_dirpath = run_utils.setup_run_subdir(config["eval_params"]["run_dirpath"],
                                                     config["optim_params"]["checkpoints_dirname"])
    model = inference.load_checkpoint(model, checkpoints_dirpath, config["device"])
    model.eval()

    rasterizer = torch_lydorn.torchvision.transforms.Rasterize(fill=True, edges=False, vertices=False)

    # Read image
    pbar = tqdm(mask_filepaths, desc="Infer images")
    for mask_filepath in pbar:
        pbar.set_postfix(status="Loading mask image")
        mask_image = skimage.io.imread(mask_filepath)

        input_image = mask_image
        if len(input_image.shape) == 2:
            # Make input_image shape (H, W, 1)
            input_image = input_image[:, :, None]
        if input_image.shape[2] == 1:
            input_image = np.repeat(input_image, 3, axis=-1)
        mean = np.array([0.5, 0.5, 0.5])
        std = np.array([1, 1, 1])
        tile_data = {
            "image": torchvision.transforms.functional.to_tensor(input_image)[None, ...],
            "image_mean": torch.from_numpy(mean)[None, ...],
            "image_std": torch.from_numpy(std)[None, ...],
            "image_filepath": [mask_filepath],
        }

        pbar.set_postfix(status="Inference")
        tile_data = inference.inference(config, model, tile_data, compute_polygonization=False)

        pbar.set_postfix(status="Polygonize")
        seg_batch = torchvision.transforms.functional.to_tensor(mask_image)[None, ...].float() / 255
        crossfield_batch = tile_data["crossfield"]
        polygons_batch, probs_batch = polygonize_acm.polygonize(seg_batch, crossfield_batch, polygonize_config)
        tile_data["polygons"] = polygons_batch
        tile_data["polygon_probs"] = probs_batch

        pbar.set_postfix(status="Saving output")
        tile_data = local_utils.batch_to_cpu(tile_data)
        tile_data = local_utils.split_batch(tile_data)[0]
        base_filepath = os.path.splitext(mask_filepath)[0]
        # save_utils.save_polygons(tile_data["polygons"], base_filepath, "polygons", tile_data["image_filepath"])
        # save_utils.save_poly_viz(tile_data["image"], tile_data["polygons"], tile_data["polygon_probs"], base_filepath, name)
        # geo_utils.save_shapefile_from_shapely_polygons(tile_data["polygons"], mask_filepath, base_filepath + "." + name + ".shp")

        if out_ext == "geojson":
            save_utils.save_geojson(tile_data["polygons"], base_filepath)
        elif out_ext == "shp":
            save_utils.save_shapefile(tile_data["polygons"], base_filepath, "polygonized", mask_filepath)
        else:
            raise ValueError(f"out_ext '{out_ext}' invalid!")

        # --- Compute IoU of mask image and extracted polygons
        polygons_raster = rasterizer(mask_image, tile_data["polygons"])[:, :, 0]
        mask = 128 < mask_image
        polygons_mask = 128 < polygons_raster
        iou = measures.iou(torch.tensor(polygons_mask).view(1, -1), torch.tensor(mask).view(1, -1), threshold=0.5)
        print("IoU:", iou.item())
        if iou < 0.9:
            print(mask_filepath)


def main():
    torch.manual_seed(0)
    # --- Process args --- #
    args = get_args()

    # --- Setup run --- #
    run_dirpath = local_utils.get_run_dirpath(args.runs_dirpath, args.run_name)
    # Load run's config file:
    config = run_utils.load_config(config_dirpath=run_dirpath)
    if config is None:
        print_utils.print_error(
            "ERROR: cannot continue without a config file. Exiting now...")
        sys.exit()

    config["eval_params"]["run_dirpath"] = run_dirpath
    if args.eval_patch_size is not None:
        config["eval_params"]["patch_size"] = args.eval_patch_size
    if args.eval_patch_overlap is not None:
        config["eval_params"]["patch_overlap"] = args.eval_patch_overlap

    backbone = get_backbone(config["backbone_params"])

    polygonize_mask(config, args.filepath, backbone, args.out_ext)


if __name__ == '__main__':
    main()