File size: 7,144 Bytes
905cd18
 
 
 
 
 
 
 
 
 
 
db5513e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905cd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5513e
 
 
905cd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5513e
905cd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5513e
905cd18
 
db5513e
905cd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5513e
 
 
 
905cd18
 
 
 
 
db5513e
905cd18
 
db5513e
905cd18
 
 
 
 
 
db5513e
 
905cd18
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import numpy as np
import os
import matplotlib.image as mpimage
import argparse
import functools
from utils import add_arguments, print_arguments
from dask.distributed import LocalCluster
from dask import bag as dbag
from dask.diagnostics import ProgressBar
from typing import Tuple
from PIL import Image
import cv2
#-----------------------------------#
#   对四个点坐标排序
#-----------------------------------#
def order_points(pts):
	# 一共4个坐标点
	rect = np.zeros((4, 2), dtype = "float32")

	# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
	# 计算左上,右下
	s = pts.sum(axis = 1)
	rect[0] = pts[np.argmin(s)]
	rect[2] = pts[np.argmax(s)]

	# 计算右上和左下
	diff = np.diff(pts, axis = 1)
	rect[1] = pts[np.argmin(diff)]
	rect[3] = pts[np.argmax(diff)]

	return rect
#-----------------------------------#
#   透射变换纠正车牌图片
#-----------------------------------#
def four_point_transform(image, pts):
	# 获取输入坐标点
	rect = order_points(pts)
	(tl, tr, br, bl) = rect

	# 计算输入的w和h值
	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
	maxWidth = max(int(widthA), int(widthB))

	heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
	heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
	maxHeight = max(int(heightA), int(heightB))

	# 变换后对应坐标位置
	dst = np.array([
		[0, 0],
		[maxWidth - 1, 0],
		[maxWidth - 1, maxHeight - 1],
		[0, maxHeight - 1]], dtype = "float32")

	# 计算变换矩阵
	M = cv2.getPerspectiveTransform(rect, dst)
	warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))

	# 返回变换后结果
	return warped

# Dataset statistics that I gathered in development
#-----------------------------------#
#   用于过滤感知质量较低的不良图片
#-----------------------------------#
IMAGE_MEAN = 0.5
IMAGE_MEAN_STD = 0.028

IMG_STD = 0.28
IMG_STD_STD = 0.01


def readImage(fileName: str) -> np.ndarray:
    image = mpimage.imread(fileName)
    return image


#-----------------------------------#
#   从文件名中提取车牌的坐标
#-----------------------------------#


def parseLabel(label: str) -> Tuple[np.ndarray, np.ndarray]:
    annotation = label.split('-')[3].split('_')
    coor1 = [int(i) for i in annotation[0].split('&')]
    coor2 = [int(i) for i in annotation[1].split('&')]
    coor3 = [int(i) for i in annotation[2].split('&')]
    coor4 = [int(i) for i in annotation[3].split('&')]
    coor = np.array([coor1, coor2, coor3, coor4])
    center = np.mean(coor, axis=0)
    return coor, center.astype(int)


#-----------------------------------#
#   根据车牌坐标裁剪出车牌图像
#-----------------------------------#
# def cropImage(image: np.ndarray, coor: np.ndarray, center: np.ndarray) -> np.ndarray:
#     image = four_point_transform(image, coor)
#     return image

def cropImage(image: np.ndarray, coor: np.ndarray, center: np.ndarray) -> np.ndarray:
    maxW = np.max(coor[:, 0] - center[0])  # max plate width
    maxH = np.max(coor[:, 1] - center[1])  # max plate height

    xWanted = [64, 128, 192, 256]
    yWanted = [32, 64, 96, 128]

    found = False
    for w, h in zip(xWanted, yWanted):
        if maxW < w//2 and maxH < h//2:
            maxH = h//2
            maxW = w//2
            found = True
            break
    if not found:  # plate too large, discard
        return np.array([])
    elif center[1]-maxH < 0 or center[1]+maxH >= image.shape[1] or \
            center[0]-maxW < 0 or center[0] + maxW >= image.shape[0]:
        return np.array([])
    else:
        return image[center[1]-maxH:center[1]+maxH, center[0]-maxW:center[0]+maxW]

#-----------------------------------#
#           保存车牌图片
#-----------------------------------#


def saveImage(image: np.ndarray, fileName: str, outDir: str) -> int:
    if image.shape[0] == 0:
        return 0
    else:
        imgShape = image.shape
        if imgShape[1] == 64:
            mpimage.imsave(os.path.join(outDir, '64_32', fileName), image)
        elif imgShape[1] == 128:
            mpimage.imsave(os.path.join(outDir, '128_64', fileName), image)
        elif imgShape[1] == 208:
            mpimage.imsave(os.path.join(outDir, '192_96', fileName), image)
        else: #resize large images
            image = Image.fromarray(image).resize((192, 96))
            image = np.asarray(image) # back to numpy array
            mpimage.imsave(os.path.join(outDir, '192_96', fileName), image)
        return 1


#-----------------------------------#
# 包装成一个函数,以便将处理区分到不同目录
#-----------------------------------#

def processImage(file: str, inputDir: str, outputDir: str, subFolder: str) -> int:
    result = parseLabel(file)
    filePath = os.path.join(inputDir,subFolder, file)
    image = readImage(filePath)
    plate = cropImage(image, result[0], result[1])
    if plate.shape[0] == 0:
        return 0
    mean = np.mean(plate/255.0)
    std = np.std(plate/255.0)
    # bad brightness
    if mean <= IMAGE_MEAN - 10*IMAGE_MEAN_STD or mean >= IMAGE_MEAN + 10*IMAGE_MEAN_STD:
        return 0
    # low contrast
    if std <= IMG_STD - 10*IMG_STD_STD:
        return 0
    status = saveImage(plate, file, outputDir)
    return status


def main(argv):
    jobNum = int(argv.jobNum)
    outputDir = argv.outputDir
    inputDir = argv.inputDir
    try:
        os.mkdir(outputDir)
        for shape in ['64_32', '128_64', '192_96']:
            os.mkdir(os.path.join(outputDir, shape))
    except OSError:
        pass  # path already exists
    client = LocalCluster(n_workers=jobNum, threads_per_worker=5)  # IO intensive, more threads
    print('* number of workers:{}, \n* input dir:{}, \n* output dir:{}\n\n'.format(jobNum, inputDir, outputDir))
    for subFolder in ['ccpd_green', 'ccpd_base', 'ccpd_db', 'ccpd_fn', 'ccpd_rotate', 'ccpd_tilt', 'ccpd_weather']:
        fileList = os.listdir(os.path.join(inputDir, subFolder))
        print('* {} images found in {}. Start processing ...'.format(len(fileList), subFolder))
        toDo = dbag.from_sequence(fileList, npartitions=jobNum*30).persist()  # persist the bag in memory
        toDo = toDo.map(processImage, inputDir, outputDir, subFolder)
        pbar = ProgressBar(minimum=2.0)
        pbar.register()  # register all computations for better tracking
        result = toDo.compute()
        print('* image cropped: {}. Done ...'.format(sum(result)))
    client.close()  # shut down the cluster


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    add_arg('jobNum',           int,    4,                                         '处理图片的线程数')
    add_arg('inputDir',         str,    'datasets/CCPD2020',                       '输入图片目录')
    add_arg('outputDir',        str,    'datasets/CCPD2020_new',                   '保存图片目录')
    args = parser.parse_args()
    print_arguments(args)
    main(args)