Spaces:
Build error
Build error
File size: 7,144 Bytes
905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 db5513e 905cd18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import numpy as np
import os
import matplotlib.image as mpimage
import argparse
import functools
from utils import add_arguments, print_arguments
from dask.distributed import LocalCluster
from dask import bag as dbag
from dask.diagnostics import ProgressBar
from typing import Tuple
from PIL import Image
import cv2
#-----------------------------------#
# 对四个点坐标排序
#-----------------------------------#
def order_points(pts):
# 一共4个坐标点
rect = np.zeros((4, 2), dtype = "float32")
# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
# 计算左上,右下
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 计算右上和左下
diff = np.diff(pts, axis = 1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
#-----------------------------------#
# 透射变换纠正车牌图片
#-----------------------------------#
def four_point_transform(image, pts):
# 获取输入坐标点
rect = order_points(pts)
(tl, tr, br, bl) = rect
# 计算输入的w和h值
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# 变换后对应坐标位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# 返回变换后结果
return warped
# Dataset statistics that I gathered in development
#-----------------------------------#
# 用于过滤感知质量较低的不良图片
#-----------------------------------#
IMAGE_MEAN = 0.5
IMAGE_MEAN_STD = 0.028
IMG_STD = 0.28
IMG_STD_STD = 0.01
def readImage(fileName: str) -> np.ndarray:
image = mpimage.imread(fileName)
return image
#-----------------------------------#
# 从文件名中提取车牌的坐标
#-----------------------------------#
def parseLabel(label: str) -> Tuple[np.ndarray, np.ndarray]:
annotation = label.split('-')[3].split('_')
coor1 = [int(i) for i in annotation[0].split('&')]
coor2 = [int(i) for i in annotation[1].split('&')]
coor3 = [int(i) for i in annotation[2].split('&')]
coor4 = [int(i) for i in annotation[3].split('&')]
coor = np.array([coor1, coor2, coor3, coor4])
center = np.mean(coor, axis=0)
return coor, center.astype(int)
#-----------------------------------#
# 根据车牌坐标裁剪出车牌图像
#-----------------------------------#
# def cropImage(image: np.ndarray, coor: np.ndarray, center: np.ndarray) -> np.ndarray:
# image = four_point_transform(image, coor)
# return image
def cropImage(image: np.ndarray, coor: np.ndarray, center: np.ndarray) -> np.ndarray:
maxW = np.max(coor[:, 0] - center[0]) # max plate width
maxH = np.max(coor[:, 1] - center[1]) # max plate height
xWanted = [64, 128, 192, 256]
yWanted = [32, 64, 96, 128]
found = False
for w, h in zip(xWanted, yWanted):
if maxW < w//2 and maxH < h//2:
maxH = h//2
maxW = w//2
found = True
break
if not found: # plate too large, discard
return np.array([])
elif center[1]-maxH < 0 or center[1]+maxH >= image.shape[1] or \
center[0]-maxW < 0 or center[0] + maxW >= image.shape[0]:
return np.array([])
else:
return image[center[1]-maxH:center[1]+maxH, center[0]-maxW:center[0]+maxW]
#-----------------------------------#
# 保存车牌图片
#-----------------------------------#
def saveImage(image: np.ndarray, fileName: str, outDir: str) -> int:
if image.shape[0] == 0:
return 0
else:
imgShape = image.shape
if imgShape[1] == 64:
mpimage.imsave(os.path.join(outDir, '64_32', fileName), image)
elif imgShape[1] == 128:
mpimage.imsave(os.path.join(outDir, '128_64', fileName), image)
elif imgShape[1] == 208:
mpimage.imsave(os.path.join(outDir, '192_96', fileName), image)
else: #resize large images
image = Image.fromarray(image).resize((192, 96))
image = np.asarray(image) # back to numpy array
mpimage.imsave(os.path.join(outDir, '192_96', fileName), image)
return 1
#-----------------------------------#
# 包装成一个函数,以便将处理区分到不同目录
#-----------------------------------#
def processImage(file: str, inputDir: str, outputDir: str, subFolder: str) -> int:
result = parseLabel(file)
filePath = os.path.join(inputDir,subFolder, file)
image = readImage(filePath)
plate = cropImage(image, result[0], result[1])
if plate.shape[0] == 0:
return 0
mean = np.mean(plate/255.0)
std = np.std(plate/255.0)
# bad brightness
if mean <= IMAGE_MEAN - 10*IMAGE_MEAN_STD or mean >= IMAGE_MEAN + 10*IMAGE_MEAN_STD:
return 0
# low contrast
if std <= IMG_STD - 10*IMG_STD_STD:
return 0
status = saveImage(plate, file, outputDir)
return status
def main(argv):
jobNum = int(argv.jobNum)
outputDir = argv.outputDir
inputDir = argv.inputDir
try:
os.mkdir(outputDir)
for shape in ['64_32', '128_64', '192_96']:
os.mkdir(os.path.join(outputDir, shape))
except OSError:
pass # path already exists
client = LocalCluster(n_workers=jobNum, threads_per_worker=5) # IO intensive, more threads
print('* number of workers:{}, \n* input dir:{}, \n* output dir:{}\n\n'.format(jobNum, inputDir, outputDir))
for subFolder in ['ccpd_green', 'ccpd_base', 'ccpd_db', 'ccpd_fn', 'ccpd_rotate', 'ccpd_tilt', 'ccpd_weather']:
fileList = os.listdir(os.path.join(inputDir, subFolder))
print('* {} images found in {}. Start processing ...'.format(len(fileList), subFolder))
toDo = dbag.from_sequence(fileList, npartitions=jobNum*30).persist() # persist the bag in memory
toDo = toDo.map(processImage, inputDir, outputDir, subFolder)
pbar = ProgressBar(minimum=2.0)
pbar.register() # register all computations for better tracking
result = toDo.compute()
print('* image cropped: {}. Done ...'.format(sum(result)))
client.close() # shut down the cluster
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('jobNum', int, 4, '处理图片的线程数')
add_arg('inputDir', str, 'datasets/CCPD2020', '输入图片目录')
add_arg('outputDir', str, 'datasets/CCPD2020_new', '保存图片目录')
args = parser.parse_args()
print_arguments(args)
main(args)
|