File size: 7,271 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Copy from https://github.com/sunset1995/pytorch-layoutnet/blob/master/pano.py
"""
import numpy as np
import numpy.matlib as matlib


def xyz_2_coorxy(xs, ys, zs, H=512, W=1024):
    us = np.arctan2(xs, ys)
    vs = -np.arctan(zs / np.sqrt(xs**2 + ys**2))
    coorx = (us / (2 * np.pi) + 0.5) * W
    coory = (vs / np.pi + 0.5) * H
    return coorx, coory


def coords2uv(coords, width, height):
    """
    Image coordinates (xy) to uv
    """
    middleX = width / 2 + 0.5
    middleY = height / 2 + 0.5
    uv = np.hstack([
        (coords[:, [0]] - middleX) / width * 2 * np.pi,
        -(coords[:, [1]] - middleY) / height * np.pi])
    return uv


def uv2xyzN(uv, planeID=1):
    ID1 = (int(planeID) - 1 + 0) % 3
    ID2 = (int(planeID) - 1 + 1) % 3
    ID3 = (int(planeID) - 1 + 2) % 3
    xyz = np.zeros((uv.shape[0], 3))
    xyz[:, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0])
    xyz[:, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0])
    xyz[:, ID3] = np.sin(uv[:, 1])
    return xyz


def uv2xyzN_vec(uv, planeID):
    """
    vectorization version of uv2xyzN
    @uv       N x 2
    @planeID  N
    """
    assert (planeID.astype(int) != planeID).sum() == 0
    planeID = planeID.astype(int)
    ID1 = (planeID - 1 + 0) % 3
    ID2 = (planeID - 1 + 1) % 3
    ID3 = (planeID - 1 + 2) % 3
    ID = np.arange(len(uv))
    xyz = np.zeros((len(uv), 3))
    xyz[ID, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0])
    xyz[ID, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0])
    xyz[ID, ID3] = np.sin(uv[:, 1])
    return xyz


def xyz2uvN(xyz, planeID=1):
    ID1 = (int(planeID) - 1 + 0) % 3
    ID2 = (int(planeID) - 1 + 1) % 3
    ID3 = (int(planeID) - 1 + 2) % 3
    normXY = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2)
    normXY[normXY < 0.000001] = 0.000001
    normXYZ = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2 + xyz[:, [ID3]] ** 2)
    v = np.arcsin(xyz[:, [ID3]] / normXYZ)
    u = np.arcsin(xyz[:, [ID1]] / normXY)
    valid = (xyz[:, [ID2]] < 0) & (u >= 0)
    u[valid] = np.pi - u[valid]
    valid = (xyz[:, [ID2]] < 0) & (u <= 0)
    u[valid] = -np.pi - u[valid]
    uv = np.hstack([u, v])
    uv[np.isnan(uv[:, 0]), 0] = 0
    return uv


def computeUVN(n, in_, planeID):
    """
    compute v given u and normal.
    """
    if planeID == 2:
        n = np.array([n[1], n[2], n[0]])
    elif planeID == 3:
        n = np.array([n[2], n[0], n[1]])
    bc = n[0] * np.sin(in_) + n[1] * np.cos(in_)
    bs = n[2]
    out = np.arctan(-bc / (bs + 1e-9))
    return out


def computeUVN_vec(n, in_, planeID):
    """
    vectorization version of computeUVN
    @n         N x 3
    @in_      MN x 1
    @planeID   N
    """
    n = n.copy()
    if (planeID == 2).sum():
        n[planeID == 2] = np.roll(n[planeID == 2], 2, axis=1)
    if (planeID == 3).sum():
        n[planeID == 3] = np.roll(n[planeID == 3], 1, axis=1)
    n = np.repeat(n, in_.shape[0] // n.shape[0], axis=0)
    assert n.shape[0] == in_.shape[0]
    bc = n[:, [0]] * np.sin(in_) + n[:, [1]] * np.cos(in_)
    bs = n[:, [2]]
    out = np.arctan(-bc / (bs + 1e-9))
    return out


def lineFromTwoPoint(pt1, pt2):
    """
    Generate line segment based on two points on panorama
    pt1, pt2: two points on panorama
    line:
        1~3-th dim: normal of the line
        4-th dim: the projection dimension ID
        5~6-th dim: the u of line segment endpoints in projection plane
    """
    numLine = pt1.shape[0]
    lines = np.zeros((numLine, 6))
    n = np.cross(pt1, pt2)
    n = n / (matlib.repmat(np.sqrt(np.sum(n ** 2, 1, keepdims=True)), 1, 3) + 1e-9)
    lines[:, 0:3] = n

    areaXY = np.abs(np.sum(n * matlib.repmat([0, 0, 1], numLine, 1), 1, keepdims=True))
    areaYZ = np.abs(np.sum(n * matlib.repmat([1, 0, 0], numLine, 1), 1, keepdims=True))
    areaZX = np.abs(np.sum(n * matlib.repmat([0, 1, 0], numLine, 1), 1, keepdims=True))
    planeIDs = np.argmax(np.hstack([areaXY, areaYZ, areaZX]), axis=1) + 1
    lines[:, 3] = planeIDs

    for i in range(numLine):
        uv = xyz2uvN(np.vstack([pt1[i, :], pt2[i, :]]), lines[i, 3])
        umax = uv[:, 0].max() + np.pi
        umin = uv[:, 0].min() + np.pi
        if umax - umin > np.pi:
            lines[i, 4:6] = np.array([umax, umin]) / 2 / np.pi
        else:
            lines[i, 4:6] = np.array([umin, umax]) / 2 / np.pi

    return lines


def lineIdxFromCors(cor_all, im_w, im_h):
    assert len(cor_all) % 2 == 0
    uv = coords2uv(cor_all, im_w, im_h)
    xyz = uv2xyzN(uv)
    lines = lineFromTwoPoint(xyz[0::2], xyz[1::2])
    num_sample = max(im_h, im_w)

    cs, rs = [], []
    for i in range(lines.shape[0]):
        n = lines[i, 0:3]
        sid = lines[i, 4] * 2 * np.pi
        eid = lines[i, 5] * 2 * np.pi
        if eid < sid:
            x = np.linspace(sid, eid + 2 * np.pi, num_sample)
            x = x % (2 * np.pi)
        else:
            x = np.linspace(sid, eid, num_sample)

        u = -np.pi + x.reshape(-1, 1)
        v = computeUVN(n, u, lines[i, 3])
        xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3])
        uv = xyz2uvN(xyz, 1)

        r = np.minimum(np.floor((uv[:, 0] + np.pi) / (2 * np.pi) * im_w) + 1,
                       im_w).astype(np.int32)
        c = np.minimum(np.floor((np.pi / 2 - uv[:, 1]) / np.pi * im_h) + 1,
                       im_h).astype(np.int32)
        cs.extend(r - 1)
        rs.extend(c - 1)
    return rs, cs


def draw_boundary_from_cor_id(cor_id, img_src):
    im_h, im_w = img_src.shape[:2]
    cor_all = [cor_id]
    for i in range(len(cor_id)):
        cor_all.append(cor_id[i, :])
        cor_all.append(cor_id[(i+2) % len(cor_id), :])
    cor_all = np.vstack(cor_all)

    rs, cs = lineIdxFromCors(cor_all, im_w, im_h)
    rs = np.array(rs)
    cs = np.array(cs)

    panoEdgeC = img_src.astype(np.uint8)
    for dx, dy in [[-1, 0], [1, 0], [0, 0], [0, 1], [0, -1]]:
        panoEdgeC[np.clip(rs + dx, 0, im_h - 1), np.clip(cs + dy, 0, im_w - 1), 0] = 0
        panoEdgeC[np.clip(rs + dx, 0, im_h - 1), np.clip(cs + dy, 0, im_w - 1), 1] = 0
        panoEdgeC[np.clip(rs + dx, 0, im_h - 1), np.clip(cs + dy, 0, im_w - 1), 2] = 255

    return panoEdgeC


def coorx2u(x, w=1024):
    return ((x + 0.5) / w - 0.5) * 2 * np.pi


def coory2v(y, h=512):
    return ((y + 0.5) / h - 0.5) * np.pi


def u2coorx(u, w=1024):
    return (u / (2 * np.pi) + 0.5) * w - 0.5


def v2coory(v, h=512):
    return (v / np.pi + 0.5) * h - 0.5


def uv2xy(u, v, z=-50):
    c = z / np.tan(v)
    x = c * np.cos(u)
    y = c * np.sin(u)
    return x, y


def pano_connect_points(p1, p2, z=-50, w=1024, h=512):
    u1 = coorx2u(p1[0], w)
    v1 = coory2v(p1[1], h)
    u2 = coorx2u(p2[0], w)
    v2 = coory2v(p2[1], h)

    x1, y1 = uv2xy(u1, v1, z)
    x2, y2 = uv2xy(u2, v2, z)

    if abs(p1[0] - p2[0]) < w / 2:
        pstart = np.ceil(min(p1[0], p2[0]))
        pend = np.floor(max(p1[0], p2[0]))
    else:
        pstart = np.ceil(max(p1[0], p2[0]))
        pend = np.floor(min(p1[0], p2[0]) + w)
    coorxs = (np.arange(pstart, pend + 1) % w).astype(np.float64)
    vx = x2 - x1
    vy = y2 - y1
    us = coorx2u(coorxs, w)
    ps = (np.tan(us) * x1 - y1) / (vy - np.tan(us) * vx)
    cs = np.sqrt((x1 + ps * vx) ** 2 + (y1 + ps * vy) ** 2)
    vs = np.arctan2(z, cs)
    coorys = v2coory(vs)

    return np.stack([coorxs, coorys], axis=-1)