File size: 24,842 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os
import json
import cv2
import numpy as np
from collections import defaultdict
from scipy import ndimage


def generate_graph(annot, image_path, out_path):
    lines = annot['lines']
    junctions = annot['junctions']
    line_junc_mat = np.array(annot['lineJunctionMatrix'])
    planes = annot['planes']
    plane_line_mat = annot['planeLineMatrix']
    plane_to_line = np.array(annot['planeLineMatrix'])
    line_to_plane = plane_to_line.T
    semantics = annot['semantics']

    all_room_edges = get_room_edges(semantics, planes, lines, junctions, plane_to_line, line_junc_mat)

    all_room_edges = filter_rooms(all_room_edges, im_size=256)

    all_colinear_pairs = find_all_colinear_paris(all_room_edges)
    colinear_sets = combine_colinear_edges(all_colinear_pairs)

    for colinear_set in colinear_sets:
        edges_to_merge = list(colinear_set)
        edges_to_merge = sorted(edges_to_merge, key=lambda x: -x[0])
        merged_edges = merge_edges(edges_to_merge)

        for merged_edge, old_edge in zip(merged_edges, edges_to_merge):
            if len(merged_edge) > 0:
                assert merged_edge[0][0] == old_edge[0]
                room_idx = merged_edge[0][0]

                if len(merged_edge) == 1 and merged_edge[0] == old_edge:
                    continue
                # change room graph accordingly
                replaced_idx = all_room_edges[room_idx].index(old_edge[1])
                all_room_edges[room_idx].pop(replaced_idx)
                for new_idx, new_edge in enumerate(merged_edge):
                    insert_idx = new_idx + replaced_idx
                    all_room_edges[room_idx].insert(insert_idx, new_edge[1])
            else:
                room_idx = old_edge[0]
                replaced_idx = all_room_edges[room_idx].index(old_edge[1])
                all_room_edges[room_idx].pop(replaced_idx)

    # take intersection for every rooms to recover the room structure
    refined_room_edges = [adjust_room_edges(room_edges) for room_edges in all_room_edges]

    # clean every room loop by removing I-shape corners
    cleaned_room_edges = clean_room_edges(refined_room_edges)

    global_graph = defaultdict(list)
    for room_edges in cleaned_room_edges:
        for edge in room_edges:
            c1, c2 = edge
            global_graph[c1] += [c2, ]
            global_graph[c2] += [c1, ]
    for corner in global_graph:
        global_graph[corner] = list(set(global_graph[corner]))

    annot_path = os.path.join(out_path, 'annot.npy')
    np.save(annot_path, global_graph)

    # draw the planar graph on the density map
    viz_image = cv2.imread(image_path)
    for c, connections in global_graph.items():
        for other_c in connections:
            cv2.line(viz_image, (int(c[0]), int(c[1])), (int(other_c[0]), int(other_c[1])), (255, 255, 0), 2)
    for c in global_graph.keys():
        cv2.circle(viz_image, (int(c[0]), int(c[1])), 3, (0, 0, 255), -1)

    # viz_image = np.zeros([256, 266, 3]).astype(np.uint8)
    # room_idx = 0
    # for room_edges in cleaned_room_edges:
    #     for line_idx, edge in enumerate(room_edges):
    #         c1, c2 = np.array(edge).astype(np.int)
    #         cv2.line(viz_image, tuple(c1), tuple(c2), (255, 255, 0), 2)
    #         cv2.circle(viz_image, tuple(c1), 3, (0, 0, 255), -1)
    #         cv2.circle(viz_image, tuple(c2), 3, (0, 0, 255), -1)
    #     room_idx += 1
    cv2.imwrite(os.path.join(out_path, 'planar_graph.png'), viz_image)


def get_room_edges(semantics, planes, lines, junctions, plane_to_line, line_junc_mat):
    room_edges = list()
    for semantic in semantics:
        plane_ids = semantic['planeID']
        label = semantic['type']
        if label in ['door', 'window', 'outwall']:  # skip non-room elements
            continue
        all_planes = [planes[idx] for idx in plane_ids]
        floor_planes = [plane for plane in all_planes if plane['type'] == 'floor']
        assert len(floor_planes) == 1, 'There should be only one floor for each room'
        floor_plane = floor_planes[0]
        floor_plane_id = floor_plane['ID']
        line_ids = np.where(plane_to_line[floor_plane_id])[0].tolist()
        floor_lines_raw = [lines[line_id] for line_id in line_ids]
        floor_lines = list()
        for line_idx, floor_line in enumerate(floor_lines_raw):
            c_id_1, c_id_2 = np.where(line_junc_mat[floor_line['ID']])[0].tolist()
            c1 = tuple(junctions[c_id_1]['coordinate'][:2])
            c2 = tuple(np.array(junctions[c_id_2]['coordinate'][:2]))
            if c1 == c2:
                continue
            floor_lines.append((c1, c2))

        floor_lines = list(set(floor_lines))  # remove duplications
        floor_lines = sort_room_edges(floor_lines)
        room_edges.append(floor_lines)
    return room_edges


def sort_room_edges(lines):
    cur_id = 0
    picked = [False] * len(lines)
    id_list = [0, ]
    while len(id_list) < len(lines):
        line = lines[cur_id]
        picked[cur_id] = True
        check_ = [(line[1] in other) and not picked[other_idx] for other_idx, other in enumerate(lines)]
        next_ids = np.nonzero(check_)[0]
        try:
            assert len(next_ids) == 1
        except:
            raise WrongRoomError('Invalid room shape')
        next_id = next_ids[0]
        id_list.append(next_id)
        if lines[next_id][1] == line[1]:  # swap the two endpoints, to make the loop valid.
            lines[next_id] = (lines[next_id][1], lines[next_id][0])
        cur_id = next_id
        if lines[next_id][1] == lines[0][0]:  # already form a closed loop, then skip the remaining lines
            break
    sorted_lines = [lines[idx] for idx in id_list]
    return sorted_lines


def find_all_colinear_paris(all_room_edges):
    colinear_pairs = list()
    for room_idx, room_edges in enumerate(all_room_edges):
        for edge_idx, edge in enumerate(room_edges):
            for other_room_idx, other_edges in enumerate(all_room_edges):
                if other_room_idx < room_idx:
                    continue
                for other_edge_idx, other_edge in enumerate(other_edges):
                    if other_room_idx == room_idx and other_edge_idx <= edge_idx:
                        continue
                    if _check_colinear(edge, other_edge, line_dist_th=8):
                        ele1 = (room_idx, edge)
                        ele2 = (other_room_idx, other_edge)
                        colinear_pairs.append([ele1, ele2])
    return colinear_pairs


def combine_colinear_edges(colinear_pairs):
    all_colinear_sets = list()
    all_pairs = list(colinear_pairs)  # make a copy of the input list
    combined = [False] * len(colinear_pairs)

    while len(all_pairs) > 0:
        colinear_set = _combine_colinear_pairs(0, all_pairs, combined)
        all_colinear_sets.append(colinear_set)
        all_pairs = [all_pairs[i] for i in range(len(all_pairs)) if combined[i] is False]
        combined = [False] * len(all_pairs)
    return all_colinear_sets


def _combine_colinear_pairs(idx, all_pairs, combined):
    colinear_set = set(all_pairs[idx])
    combined[idx] = True
    for other_idx, pair in enumerate(all_pairs):
        if not combined[other_idx] and (
                all_pairs[idx][0] in all_pairs[other_idx] or all_pairs[idx][1] in all_pairs[other_idx]):
            colinear_set = colinear_set.union(_combine_colinear_pairs(other_idx, all_pairs, combined))
    return colinear_set


def _check_colinear(e1, e2, line_dist_th=8):
    # first check whether two line segments are parallel to each other, if not, return False directly
    len_e1 = len_edge(e1)
    len_e2 = len_edge(e2)
    # we need to always make e2 the shorter one
    if len_e1 < len_e2:
        e1, e2 = e2, e1
    v1_01 = (e1[1][0] - e1[0][0], e1[1][1] - e1[0][1])
    v1_10 = (e1[0][0] - e1[1][0], e1[0][1] - e1[1][1])
    v2_01 = (e2[1][0] - e2[0][0], e2[1][1] - e2[0][1])
    v2_10 = (e2[0][0] - e2[1][0], e2[0][1] - e2[1][1])
    len_1 = np.sqrt(v1_01[0] ** 2 + v1_01[1] ** 2)
    len_2 = np.sqrt(v2_01[0] ** 2 + v2_01[1] ** 2)
    if len_1 == 0 or len_2 == 0:
        cos = 0
    else:
        cos = (v1_01[0] * v2_01[0] + v1_01[1] * v2_01[1]) / (len_1 * len_2)
    if abs(cos) > 0.99:
        # then check the distance between two parallel lines
        len_10_20 = len_edge((e1[0], e2[0]))
        len_10_21 = len_edge((e1[0], e2[1]))
        len_11_20 = len_edge((e1[1], e2[0]))
        len_11_21 = len_edge((e1[1], e2[1]))

        # two endpoints are very close, then we can say these two edges are colinear
        if np.min([len_10_20, len_10_21, len_11_20, len_11_21]) <= 5:
            return True
        # otherwise we need to check the distance first
        v_10_20 = (e2[0][0] - e1[0][0], e2[0][1] - e1[0][1])
        cos_11_10_20 = (v1_01[0] * v_10_20[0] + v1_01[1] * v_10_20[1]) / (len_1 * len_10_20)
        sin_11_10_20 = np.sqrt(1 - cos_11_10_20 ** 2)
        dist_20_e1 = len_10_20 * sin_11_10_20
        if dist_20_e1 <= line_dist_th:
            # we need two check whether they have some overlaps
            v_11_20 = (e2[0][0] - e1[1][0], e2[0][1] - e1[1][1])
            cos_10_11_20 = (v1_10[0] * v_11_20[0] + v1_10[1] * v_11_20[1]) / (len_1 * len_11_20)
            if cos_11_10_20 >= 0 and cos_10_11_20 >= 0:
                return True
            v_10_21 = (e2[1][0] - e1[0][0], e2[1][1] - e1[0][1])
            cos_11_10_21 = (v1_01[0] * v_10_21[0] + v1_01[1] * v_10_21[1]) / (len_1 * len_10_21)
            v_11_21 = (e2[1][0] - e1[1][0], e2[1][1] - e1[1][1])
            cos_10_11_21 = (v1_10[0] * v_11_21[0] + v1_10[1] * v_11_21[1]) / (len_1 * len_11_21)
            if cos_11_10_21 >= 0 and cos_10_11_21 >= 0:
                return True
            return False
        else:
            # if the two line segments have distance > 3, we can say they are not colinear
            return False
    else:
        return False


def merge_edges(edges):
    base_e = edges[0][1]
    merged_edges = [edges[0], ]
    base_len = np.sqrt((base_e[1][0] - base_e[0][0]) ** 2 + (base_e[1][1] - base_e[0][1]) ** 2)
    base_unit_v = ((base_e[1][0] - base_e[0][0]) / base_len, (base_e[1][1] - base_e[0][1]) / base_len)

    for edge in edges[1:]:
        room_idx = edge[0]
        e = edge[1]
        v_b0e0 = (e[0][0] - base_e[0][0], e[0][1] - base_e[0][1])
        proj_len = (v_b0e0[0] * base_unit_v[0] + v_b0e0[1] * base_unit_v[1])
        proj_e0 = (int(base_e[0][0] + base_unit_v[0] * proj_len), int(base_e[0][1] + base_unit_v[1] * proj_len))
        proj_e1 = (int(proj_e0[0] + e[1][0] - e[0][0]), int(proj_e0[1] + e[1][1] - e[0][1]))
        new_e = (proj_e0, proj_e1)
        new_edge = (room_idx, new_e)
        merged_edges.append(new_edge)

    adjusted_merged_edges = adjust_colinear_edges(merged_edges)

    return adjusted_merged_edges


def adjust_colinear_edges(edges):
    base_corner = (edges[0][0], edges[0][1][0])
    all_corners = [base_corner, (edges[0][0], edges[0][1][1])]
    for edge in edges[1:]:
        all_corners.append((edge[0], edge[1][0]))
        all_corners.append((edge[0], edge[1][1]))
    unit_v = unit_v_edge(edges[0][1])
    corner_projs = list()
    # FIXME: need to fix the corner coords here, it's wrong now!! they are not merged...
    for room, other_c in all_corners:
        v_base_c = (other_c[0] - base_corner[1][0], other_c[1] - base_corner[1][1])
        proj = (unit_v[0] * v_base_c[0] + unit_v[1] * v_base_c[1])
        corner_projs.append(proj)
    order = np.argsort(corner_projs).tolist()

    # # merge corners that are too close to the prev corner
    # for o_idx, corner_idx in enumerate(order[1:]):
    #     corner = all_corners[corner_idx][1]
    #     prev_idx = order[o_idx]
    #     prev_corner = all_corners[prev_idx][1]
    #     dist = len_edge((corner, prev_corner))
    #     if dist <= 5:
    #         all_corners[corner_idx] = (all_corners[corner_idx][0], prev_corner)

    adjusted_edges = list()
    for idx, edge in enumerate(edges):
        room_idx = edge[0]
        idx_1 = idx * 2
        idx_2 = idx * 2 + 1
        adj_idx_1 = order.index(idx_1)
        adj_idx_2 = order.index(idx_2)
        step_direction = 1 if adj_idx_2 > adj_idx_1 else -1
        adjusted_edge = list()
        for o_idx in range(adj_idx_1, adj_idx_2, step_direction):
            c_idx = order[o_idx]
            next_c_idx = order[o_idx + step_direction]
            segment = (room_idx, (all_corners[c_idx][1], all_corners[next_c_idx][1]))
            if len_edge(segment[1]) == 0:
                continue
            adjusted_edge.append(segment)
        adjusted_edges.append(adjusted_edge)
    return adjusted_edges


def adjust_room_edges(room_edges):
    refined_room_edges = list()

    init_room_edges = list(room_edges)
    for edge_i, edge in enumerate(room_edges):
        next_i = edge_i
        while True:
            next_i = next_i + 1 if next_i < len(room_edges) - 1 else 0
            next_edge = room_edges[next_i]
            if next_edge[0] != next_edge[1]:
                break
        if edge[1] == next_edge[0]:  # no need for refining
            refined_room_edges.append(edge)
        else:  # the two corners disagree, refinement is required
            if edge[0] == edge[1]:
                print('skip collasped edge')
                continue
            unit_edge = unit_v_edge(edge)
            ext_edge = ((edge[0][0] - unit_edge[0] * 50, edge[0][1] - unit_edge[1] * 50),
                        (edge[1][0] + unit_edge[0] * 50, edge[1][1] + unit_edge[1] * 50))
            unit_next = unit_v_edge(next_edge)
            ext_next = ((next_edge[0][0] - unit_next[0] * 50, next_edge[0][1] - unit_next[1] * 50),
                        (next_edge[1][0] + unit_next[0] * 50, next_edge[1][1] + unit_next[1] * 50))
            intersec = get_intersection(ext_edge[0], ext_edge[1], ext_next[0], ext_next[1])
            try:
                assert intersec is not None
            except:
                print('no intersect, move endpoint directly')
                intersec = next_edge[0]
            intersec = (int(np.round(intersec[0])), int(np.round(intersec[1])))
            refined_edge = (edge[0], intersec)
            refined_room_edges.append(refined_edge)
            room_edges[edge_i] = refined_edge
            room_edges[next_i] = (intersec, next_edge[1])
            if next_i < edge_i:
                refined_room_edges[next_i] = room_edges[next_i]

    # drop collapsed edges
    refined_room_edges = [edge for edge in refined_room_edges if edge[0] != edge[1]]
    for edge_i in range(len(refined_room_edges)):
        next_i = edge_i + 1 if edge_i < len(refined_room_edges) - 1 else 0
        if refined_room_edges[edge_i][1] != refined_room_edges[next_i][0]:
            new_edge = (refined_room_edges[edge_i][0], refined_room_edges[next_i][0])
            refined_room_edges[edge_i] = new_edge
    return refined_room_edges


def clean_room_edges(all_room_edges):
    refined_room_paths = [_extract_room_path(room_edges) for room_edges in all_room_edges]
    corner_to_room = defaultdict(list)
    for room_idx, room_path in enumerate(refined_room_paths):
        for corner in room_path:
            corner_to_room[corner].append(room_idx)
    # remove I-shape corner used by only one room
    for room_idx, room_edges in enumerate(all_room_edges):
        cp_room_edges = list(room_edges)
        rm_flag = True
        while rm_flag:
            rm_flag = False
            for edge_i, edge in enumerate(cp_room_edges):
                prev_i = edge_i - 1
                prev_edge = cp_room_edges[prev_i]
                if _check_colinear(prev_edge, edge, line_dist_th=5):
                    rm_candidate = edge[0]
                    if len(corner_to_room[rm_candidate]) == 1 and corner_to_room[rm_candidate][0] == room_idx:
                        cp_room_edges[prev_i] = (prev_edge[0], edge[1])
                        rm_flag = True
                        cp_room_edges.pop(edge_i)
                        break
                next_i = edge_i + 1 if edge_i < len(cp_room_edges) - 1 else 0
                next_edge = cp_room_edges[next_i]
                if _check_colinear(next_edge, edge, line_dist_th=5):
                    rm_candidate = edge[1]
                    if len(corner_to_room[rm_candidate]) == 1 and corner_to_room[rm_candidate][0] == room_idx:
                        cp_room_edges[next_i] = (edge[0], next_edge[1])
                        rm_flag = True
                        cp_room_edges.pop(edge_i)
                        break
        if len(cp_room_edges) != len(room_edges):
            all_room_edges[room_idx] = cp_room_edges

    corner_to_room = get_corner_to_room(all_room_edges)
    all_corners = list(corner_to_room.keys())
    corners_to_merge = find_corners_to_merge(all_corners, corner_to_room)
    while corners_to_merge is not None:
        num_aff = [len(corner_to_room[x]) for x in corners_to_merge]
        order = np.argsort(num_aff)[::-1]
        base_corner = corners_to_merge[order[0]]
        for corner in corners_to_merge:
            if corner == base_corner:
                continue
            all_room_edges = move_corner(corner, base_corner, corner_to_room, all_room_edges)

        corner_to_room = get_corner_to_room(all_room_edges)
        all_corners = list(corner_to_room.keys())
        corners_to_merge = find_corners_to_merge(all_corners, corner_to_room)

    # for room_idx, room_edges in enumerate(all_room_edges):
    #     cp_room_edges = list(room_edges)
    #     rm_flag = True
    #     while rm_flag:
    #         rm_flag = False
    #         for edge_i, edge in enumerate(cp_room_edges):
    #             len_e = len_edge(edge)
    #             if len_e <= 5:
    #                 if len(corner_to_room[edge[0]]) == 1:
    #                     prev_i = edge_i - 1
    #                     prev_edge = cp_room_edges[prev_i]
    #                     cp_room_edges[prev_i] = (prev_edge[0], edge[1])
    #                     rm_flag = True
    #                     cp_room_edges.pop(edge_i)
    #                     break
    #                 elif len(corner_to_room[edge[1]]) == 1:
    #                     next_i = edge_i + 1 if edge_i < len(cp_room_edges) - 1 else 0
    #                     next_edge = cp_room_edges[next_i]
    #                     cp_room_edges[next_i] = (edge[0], next_edge[1])
    #                     rm_flag = True
    #                     cp_room_edges.pop(edge_i)
    #                 else:
    #                     continue
    #
    #     if len(cp_room_edges) != len(room_edges):
    #         all_room_edges[room_idx] = cp_room_edges

    return all_room_edges


def move_corner(c, target, corner_to_room, all_room_edges):
    rooms = corner_to_room[c]
    for room_idx in rooms:
        for edge_idx, edge in enumerate(all_room_edges[room_idx]):
            if c in edge:
                if c == edge[0]:
                    new_edge = (target, edge[1])
                elif c == edge[1]:
                    new_edge = (edge[0], target)
                else:
                    continue
                all_room_edges[room_idx][edge_idx] = new_edge
    return all_room_edges


def find_corners_to_merge(all_corners, corner_to_room, th=5):
    all_close_pairs = list()
    for idx1, corner in enumerate(all_corners):
        for idx2, other_corner in enumerate(all_corners):
            if idx2 <= idx1:
                continue
            if len_edge((corner, other_corner)) <= th:
                rooms_1 = tuple(sorted(corner_to_room[corner]))
                rooms_2 = tuple(sorted(corner_to_room[other_corner]))
                if rooms_1 == rooms_2:
                    continue
                elif len(rooms_1) ==1:
                    if rooms_1[0] in list(rooms_2):
                        continue
                    else:
                        all_close_pairs.append([corner, other_corner])
                elif len(rooms_2) ==1:
                    if rooms_2[0] in list(rooms_1):
                        continue
                    else:
                        all_close_pairs.append([corner, other_corner])
                else:
                    all_close_pairs.append([corner, other_corner])

    if len(all_close_pairs) == 0:
        return None

    close_set = find_one_close_set(all_close_pairs)
    corners_to_merge = list(close_set)

    return corners_to_merge


def find_one_close_set(all_corner_paris):
    all_pairs = list(all_corner_paris)  # make a copy of the input list
    combined = [False] * len(all_corner_paris)

    close_set = _combine_colinear_pairs(0, all_pairs, combined)

    return close_set


def get_corner_to_room(all_room_edges):
    room_paths = [_extract_room_path(room_edges) for room_edges in all_room_edges]
    corner_to_room = defaultdict(list)
    for room_idx, room_path in enumerate(room_paths):
        for corner in room_path:
            corner_to_room[corner].append(room_idx)
    return corner_to_room


def filter_rooms(all_room_edges, im_size):
    # filter rooms that are covered by larger rooms
    room_masks = list()
    updated_room_edges = list()
    for room_edges in all_room_edges:
        room_mask = draw_room_seg_from_edges(room_edges, im_size)
        if room_mask is not None and room_mask.sum() > 20: # remove too small rooms
            room_masks.append(room_mask)
            updated_room_edges.append(room_edges)
    all_room_edges = updated_room_edges

    removed = list()
    for room_idx, room_mask in enumerate(room_masks):
        # do not consider the current room, and do not consider removed rooms
        other_masks = [room_masks[i] for i in range(len(all_room_edges)) if i != room_idx and i not in removed]
        if len(other_masks) == 0:  # if all other masks are removed..
            other_masks_all = np.zeros([im_size, im_size])
        else:
            other_masks_all = np.clip(np.sum(np.stack(other_masks, axis=-1), axis=-1), 0, 1)
        joint_mask = np.clip(other_masks_all + room_mask, 0, 1)
        mask_area = room_mask.sum()
        overlap_area = mask_area + other_masks_all.sum() - joint_mask.sum()
        if overlap_area / mask_area > 0.5:
            removed.append(room_idx)

    all_room_edges = [all_room_edges[idx] for idx in range(len(all_room_edges)) if idx not in removed]

    return all_room_edges


## Utils

class WrongRoomError(Exception):
    pass

def _extract_room_path(room_edges):
    room_path = [edge[0] for edge in room_edges]
    return room_path


def len_edge(e):
    return np.sqrt((e[1][0] - e[0][0]) ** 2 + (e[1][1] - e[0][1]) ** 2)


def unit_v_edge(e):
    len_e = len_edge(e)
    assert len_e != 0
    unit_v = ((e[1][0] - e[0][0]) / len_e, (e[1][1] - e[0][1]) / len_e)
    return unit_v


def get_intersection(p0, p1, p2, p3):
    """
        reference: StackOverflow https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect#565282
    """
    s1_x = p1[0] - p0[0]
    s1_y = p1[1] - p0[1]
    s2_x = p3[0] - p2[0]
    s2_y = p3[1] - p2[1]

    s = (-s1_y * (p0[0] - p2[0]) + s1_x * (p0[1] - p2[1])) / (-s2_x * s1_y + s1_x * s2_y)
    t = (s2_x * (p0[1] - p2[1]) - s2_y * (p0[0] - p2[0])) / (-s2_x * s1_y + s1_x * s2_y)

    if 1 >= s >= 0 and 1 >= t >= 0:
        i_x = p0[0] + (t * s1_x)
        i_y = p0[1] + (t * s1_y)
        return (i_x, i_y)
    else:
        return None


def draw_room_seg_from_edges(edges, im_size):
    edge_map = np.zeros([im_size, im_size])
    for edge in edges:
        edge = np.array(edge).astype(np.int)
        cv2.line(edge_map, tuple(edge[0]), tuple(edge[1]), 1, 3)
    reverse_edge_map = 1 - edge_map
    label, num_features = ndimage.label(reverse_edge_map)
    if num_features < 2:
        return None
    bg_label = label[0, 0]
    num_labels = [(label==l).sum() for l in range(1, num_features+1)]
    num_labels[bg_label-1] = 0
    room_label = np.argmax(num_labels) + 1
    room_map = np.zeros([im_size, im_size])
    room_map[np.where(label == room_label)] = 1

    return room_map



if __name__ == '__main__':
    data_base = './montefloor_data/'
    dir_names = list(sorted(os.listdir(data_base)))

    invalid_scenes = list()

    for dir_name in dir_names:
        if 'scene' not in dir_name:
            continue
        data_dir = os.path.join(data_base, dir_name)
        annot_path = os.path.join(data_dir, 'annotation_3d.json')
        with open(annot_path) as f:
            annot = json.load(f)
        image_path = os.path.join(data_dir, 'density.png')

        try:
            generate_graph(annot, image_path, data_dir)
        except WrongRoomError:
            invalid_scenes.append(dir_name)
        print('Finish processing data {}'.format(dir_name))

    print('Failed on {} scenes with invalid rooms: {}'.format(len(invalid_scenes), invalid_scenes))