File size: 16,021 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import cv2
import open3d
import os
import matplotlib.pyplot as plt
from PIL import Image
import json

from misc.utils import parse_camera_info
from sem_seg_utils import *
from visualize_3d import visualize_wireframe

class PointCloudReaderPerspective():

    def __init__(self, path, resolution="full", random_level=0, generate_color=False, generate_normal=False,
                 generate_segmentation=False):
        perspective_str = "perspective"
        self.path = path
        self.random_level = random_level
        self.resolution = resolution
        self.generate_color = generate_color
        self.generate_normal = generate_normal
        self.generate_segmentation = generate_segmentation
        sections = sorted([p for p in os.listdir(os.path.join(path, "2D_rendering"))])

        sections_views = [sorted(os.listdir(os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution]))) \
                          if os.path.isdir(os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution])) \
                          else [] \
                          for p in sections]

        self.depth_paths = []
        self.rgb_paths = []
        self.seg_paths = []
        self.normal_paths = []
        self.pose_paths = []
        for p, views in zip(sections, sections_views):
            if not os.path.isdir(os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution])):
                continue

            self.depth_paths += [os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution, v, "depth.png"]) for v in views]
            self.rgb_paths += [os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution, v, "rgb_rawlight.png"]) for v in views]
            self.seg_paths += [os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution, v, "semantic.png"]) for v in views]
            self.normal_paths += [os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution, v, "normal.png"]) for v in views]
            self.pose_paths += [os.path.join(*[path, "2D_rendering", p, perspective_str, self.resolution, v, "camera_pose.txt"]) for v in views]

        self.point_cloud = self.generate_point_cloud(self.random_level, color=self.generate_color,
                                                     normal=self.generate_normal,
                                                     seg=self.generate_segmentation)


    def read_camera_center(self):
        camera_centers = []
        print(self.camera_paths)
        print(self.depth_paths)
        for i in range(len(self.camera_paths)):
            with open(self.camera_paths[i], 'r') as f:
                line = f.readline()
            center = list(map(float, line.strip().split(" ")))
            camera_centers.append(np.asarray([center[0], center[1], center[2]]))
            print(camera_centers)
        return camera_centers

    def generate_point_cloud(self, random_level=0, color=False, normal=False, seg=False):
        coords = []
        colors = []
        segmentations = []
        normals = []
        points = {}

        # Getting Coordinates
        for i in range(len(self.depth_paths)):
            print(i)
            # i = 13
            W, H = (1280, 720)
            depth_img = cv2.imread(self.depth_paths[i], cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR) / 1000.
            inv_depth_mask = depth_img < .2
            depth_img[inv_depth_mask] = .2 # Why does this fix the problem?
            # rgb_img = cv2.imread(self.rgb_paths[i])
            # plt.subplot(121)
            # plt.imshow(rgb_img)
            # plt.subplot(122)
            # plt.imshow(depth_img)
            # plt.show()

            camera_pose = np.loadtxt(self.pose_paths[i])
            rot, trans, K = parse_camera_info(camera_pose, H, W, inverse=True)

            pose = np.eye(4)
            pose[:3, :3] = rot
            pose[:3, 3] = trans / 1000.
            inv_pose = np.linalg.inv(pose)

            xs, ys = np.meshgrid(range(W), range(H), indexing='xy')

            # xyz_homo = np.concatenate([xyz, np.ones_like(xs)], axis=0)
            # xyz_h_global = pose.dot(xyz_homo).T
            # xyz_global = xyz_h_global[:, :3] / xyz_h_global[:, 3][:, None]

            if color:
                rgb_img = cv2.imread(self.rgb_paths[i])
                rgb_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2RGB)
                # xs, ys = np.meshgrid(range(1280), range(720), indexing='xy')
            if seg:
                seg_img = Image.open(self.seg_paths[i])
                # xs, ys = np.meshgrid(range(1280), range(720), indexing='xy')
                seg_labels = np.array(seg_img.convert(mode="P", palette=create_color_palette()))

                def seg_grad(seg1):
                    # [-1 0 1] kernel
                    dx = np.abs(seg1[:, 2:] - seg1[:, :-2])
                    dy = np.abs(seg1[2:, :] - seg1[:-2, :])

                    grad = np.zeros_like(seg1)
                    grad[:, 1:-1] = dx
                    grad[1:-1, :] = np.maximum(grad[1:-1, :], dy)

                    grad = grad != 0
                    return grad

                def depth_grad(depth1):
                    # [-1 0 1] kernel
                    dx = np.abs(depth1[:, 2:] - depth1[:, :-2])
                    dy = np.abs(depth1[2:, :] - depth1[:-2, :])

                    grad = np.zeros_like(depth1)
                    grad[:, 1:-1] = dx
                    grad[1:-1, :] = np.maximum(grad[1:-1, :], dy)

                    grad = np.abs(grad) > 0.1
                    return grad

                grad_mask = np.logical_and(depth_grad(depth_img), seg_grad(seg_labels))
                # kern = np.ones((3, 3), np.uint8)
                # seg_mask = cv2.dilate((seg_mask).astype(np.uint8), kernel=kern, iterations=1)

                # plt.imshow(seg_mask)
                # plt.show()
                # not_windows = np.argwhere(seg_labels != class_name_to_id['window'])
                # ys = not_windows[:, 0]
                # xs = not_windows[:, 1]
                #
                # seg_labels = np.tile(np.round(seg_labels)[ys, xs].reshape(-1, 1), reps=[1, 3])
                # seg_labels = np.tile(seg_labels[:, :, None], reps=[1, 1, 3]) / 255

                # valid_mask = np.argwhere(valid_mask == 0)
                # valid_mask = np.argwhere(np.logical_and(grad_mask == 0, seg_labels != class_name_to_id['window']))
                valid_mask = np.argwhere(grad_mask == 0)

                ys = valid_mask[:, 0]
                xs = valid_mask[:, 1]

                seg_labels[inv_depth_mask] = 38
                seg_labels = np.tile(np.round(seg_labels)[ys, xs].reshape(-1, 1), reps=[1, 3])

            zs = depth_img[ys, xs]
            xs = xs.reshape(1, -1)
            ys = ys.reshape(1, -1)
            zs = zs.reshape(1, -1)

            inverse_K = np.linalg.inv(K)

            xyz = (inverse_K[:3, :3].dot(np.concatenate([xs, ys, np.ones_like(xs)], axis=0)))
            xyz = zs * (xyz / np.linalg.norm(xyz, axis=0, ord=2))
            # xyz = zs * xyz
            xyz_o3d = open3d.geometry.PointCloud()
            xyz_o3d.points = open3d.utility.Vector3dVector(xyz.T)
            xyz_o3d.transform(pose)
            xyz_global = np.asarray(xyz_o3d.points)

            segmentations += list(seg_labels)
            colors += list(rgb_img[ys, xs].reshape(-1,3))
            coords += list(xyz_global)
            # break

        points['coords'] = np.asarray(coords) * 1000.
        points['colors'] = np.asarray(colors) / 255.0
        points['segs'] = np.asarray(segmentations)




        # if normal:
        #     # Getting Normal
        #     for i in range(len(self.normal_paths)):
        #         print(self.normal_paths[i])
        #         normal_img = cv2.imread(self.normal_paths[i])
        #         for x in range(normal_img.shape[0]):
        #             for y in range(normal_img.shape[1]):
        #                 normals.append(normalize(normal_img[x, y].reshape(-1, 1)).ravel())
        #     points['normals'] = normals



        return points

    def get_point_cloud(self):
        return self.point_cloud

    def display_inlier_outlier(self, cloud, ind):
        inlier_cloud = cloud.select_down_sample(ind)
        # outlier_cloud = cloud.select_down_sample(ind, invert=True)

        print("Showing outliers (red) and inliers (gray): ")
        # outlier_cloud.paint_uniform_color([1, 0, 0])
        # inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
        # o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud])
        return inlier_cloud

    def visualize(self, o3d_pcd=None):
        # input("Max depth?")
        print("Visualizing...")
        pcd = open3d.geometry.PointCloud()

        if o3d_pcd is None:
            pcd.points = open3d.utility.Vector3dVector(self.point_cloud['coords'])
            # if self.generate_normal:
            #     pcd.normals = open3d.utility.Vector3dVector(self.point_cloud['normals'])

            # if False and self.generate_segmentation:
            #     pcd.colors = open3d.utility.Vector3dVector(self.point_cloud['segs'] / 255.)
            # elif self.generate_color:
            #     pcd.colors = open3d.utility.Vector3dVector(self.point_cloud['colors'])
            # pcd.colors = open3d.utility.Vector3dVector(self.point_cloud['colors'])
            pcd.colors = open3d.utility.Vector3dVector(self.point_cloud['segs'] / 255.)
        else:
            pcd = o3d_pcd

        vis = open3d.visualization.Visualizer()
        # vis.create_window(window_name="O3D")
        vis.create_window(window_name="O3D", width=1280, height=720, left=0, top=0,
                          visible=True)  # use visible=True to visualize the point cloud
        # vis.get_render_option().light_on = False
        # vis.get_render_option().point_size = 20

        vis.add_geometry(pcd)


        with open("/media/sinisa/Sinisa_hdd_data/Sinisa_Projects/corridor_localisation/Datasets/Structured_3D_dataset/Structured3D/Structured3D_0/Structured3D/train/scene_00015/annotation_3d.json") as file:
            annos = json.load(file)

        wireframe_geo_list = visualize_wireframe(annos, vis=False, ret=True)

        vis.add_geometry(wireframe_geo_list[0])
        vis.add_geometry(wireframe_geo_list[1])

        # for view_ind in range(len(self.pose_paths)):
        #     # if view_ind != 25:
        #     #     continue
        #     W, H = (1280, 720)
        #     depth_img = cv2.imread(self.depth_paths[view_ind], cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR) / 1000.
        #
        #     # rgb_img = cv2.imread(self.rgb_paths[i])
        #     # plt.subplot(121)
        #     # plt.imshow(rgb_img)
        #     # plt.subplot(122)
        #     # plt.imshow(depth_img)
        #     # plt.show()
        #
        #     camera_pose = np.loadtxt(self.pose_paths[view_ind])
        #     rot, trans, K = parse_camera_info(camera_pose, H, W, inverse=True)
        #
        #     pose = np.eye(4)
        #     pose[:3, :3] = rot
        #     pose[:3, 3] = trans / 1000.
        #
        #     camera_param = vis.get_view_control().convert_to_pinhole_camera_parameters()
        #     fx, fy = camera_param.intrinsic.get_focal_length()
        #     cx = camera_param.intrinsic.intrinsic_matrix[0, 2]
        #     cy = camera_param.intrinsic.intrinsic_matrix[1, 2]
        #     camera_param.intrinsic.set_intrinsics(camera_param.intrinsic.width, camera_param.intrinsic.height,
        #                                           K[0, 0], K[1, 1], cx, cy)
        #     camera_param.extrinsic = np.linalg.inv(pose)
        #     ctr = vis.get_view_control()
        #     ctr.convert_from_pinhole_camera_parameters(camera_param)
        #     depth_render = vis.capture_depth_float_buffer(do_render=True)
        #     depth_render = np.asarray(depth_render)
        #
        #
        #     camera_param = vis.get_view_control().convert_to_pinhole_camera_parameters()
        #     print("My_intr", K)
        #     print("O3D_intr", camera_param.intrinsic.intrinsic_matrix)
        #     print("view ind", view_ind)
        #
        #     print("Plot")
        #     plt.subplot(131)
        #     plt.imshow(depth_img)
        #     plt.subplot(132)
        #     plt.imshow(depth_render)
        #     plt.subplot(133)
        #     plt.imshow(np.abs(depth_render - depth_img))
        #     plt.show()

        vis.run()
        vis.destroy_window()

    def generate_density(self, width=256, height=256):

        ps = self.point_cloud["coords"]

        unique_coords, unique_ind = np.unique(np.round(ps / 10) * 10., return_index=True, axis=0)

        ps = unique_coords


        image_res = np.array((width, height))

        max_coords = np.max(ps, axis=0)
        min_coords = np.min(ps, axis=0)
        max_m_min = max_coords - min_coords

        max_coords = max_coords + 0.1 * max_m_min
        min_coords = min_coords - 0.1 * max_m_min


        # coordinates = np.round(points[:, :2] / max_coordinates[None,:2] * image_res[None])
        coordinates = \
            np.round(
                (ps[:, :2] - min_coords[None, :2]) / (max_coords[None,:2] - min_coords[None, :2]) * image_res[None])
        coordinates = np.minimum(np.maximum(coordinates, np.zeros_like(image_res)),
                                    image_res - 1)

        density = np.zeros((height, width), dtype=np.float32)

        unique_coordinates, counts = np.unique(coordinates, return_counts=True, axis=0)
        print(np.unique(counts))
        # counts = np.minimum(counts, 2e3)
        #
        unique_coordinates = unique_coordinates.astype(np.int32)

        density[unique_coordinates[:, 1], unique_coordinates[:, 0]] = counts
        density = density / np.max(density)
        # print(np.unique(density))

        plt.figure()
        plt.imshow(density)
        plt.show()

        return density

    def subsample_pcd(self, seg=False):
        # input("Max depth?")
        pcd = open3d.geometry.PointCloud()
        pcd.points = open3d.utility.Vector3dVector(self.point_cloud['coords'])
        # if self.generate_normal:
        #     pcd.normals = open3d.utility.Vector3dVector(self.point_cloud['normals'])

        if seg:
            pcd.colors = open3d.utility.Vector3dVector(self.point_cloud['segs'] / 255.)
        else:
            pcd.colors = open3d.utility.Vector3dVector(self.point_cloud['colors'])

        final_pcd = pcd
        final_pcd, inds = pcd.remove_statistical_outlier(nb_neighbors=10,
                                                            std_ratio=3.0)
        #
        final_pcd = final_pcd.uniform_down_sample(every_k_points=10)
        return final_pcd

    def export_ply_from_o3d_pcd(self, path, pcd, seg=False):
        '''
        ply
        format ascii 1.0
        comment Mars model by Paul Bourke
        element vertex 259200
        property float x
        property float y
        property float z
        property uchar r
        property uchar g
        property uchar b
        property float nx
        property float ny
        property float nz
        end_header
        '''

        coords = np.asarray(pcd.points)
        colors = (np.asarray(pcd.colors) * 255).astype(np.int32)
        with open(path, "w") as f:
            f.write("ply\n")
            f.write("format ascii 1.0\n")
            f.write("element vertex %d\n" % coords.shape[0])
            f.write("property float x\n")
            f.write("property float y\n")
            f.write("property float z\n")
            if self.generate_color:
                f.write("property uchar red\n")
                f.write("property uchar green\n")
                f.write("property uchar blue\n")

            f.write("end_header\n")
            for i in range(coords.shape[0]):
                coord = coords[i].tolist()
                color = colors[i].tolist()
                data = coord + color
                f.write(" ".join(list(map(str,data)))+'\n')