File size: 10,771 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import cv2
import open3d as o3d
import os
from sklearn.preprocessing import normalize
import json
import matplotlib.pyplot as plt

from sem_seg_utils import *
from visualize_3d import visualize_wireframe

NUM_SECTIONS = -1

class PointCloudReaderPanorama():

    def __init__(self, path, resolution="full", random_level=0, generate_color=False, generate_normal=False):
        self.path = path
        self.random_level = random_level
        self.resolution = resolution
        self.generate_color = generate_color
        self.generate_normal = generate_normal
        sections = [p for p in os.listdir(os.path.join(path, "2D_rendering"))]
        self.depth_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", self.resolution, "depth.png"]) for p in sections]
        self.rgb_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", self.resolution, "rgb_coldlight.png"]) for p in sections]
        self.normal_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", self.resolution, "normal.png"]) for p in sections]
        self.camera_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", "camera_xyz.txt"]) for p in sections]
        self.camera_centers = self.read_camera_center()
        self.point_cloud = self.generate_point_cloud(self.random_level, color=self.generate_color, normal=self.generate_normal)

    def read_camera_center(self):
        camera_centers = []
        for i in range(len(self.camera_paths)):
            with open(self.camera_paths[i], 'r') as f:
                line = f.readline()
            center = list(map(float, line.strip().split(" ")))
            camera_centers.append(np.asarray([center[0], center[1], center[2]]))
        return camera_centers

    def generate_point_cloud(self, random_level=0, color=False, normal=False):
        coords = []
        colors = []
        normals = []
        points = {}

        # Getting Coordinates
        for i in range(len(self.depth_paths)):
            depth_img = cv2.imread(self.depth_paths[i], cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR)
            x_tick = 180.0/depth_img.shape[0]
            y_tick = 360.0/depth_img.shape[1]

            rgb_img = cv2.imread(self.rgb_paths[i])
            rgb_img = cv2.cvtColor(rgb_img, code=cv2.COLOR_BGR2RGB)
            normal_img = cv2.imread(self.normal_paths[i])

            for x in range(0, depth_img.shape[0]):
                for y in range(0, depth_img.shape[1]):
                    # need 90 - -09
                    alpha = 90 - (x * x_tick)
                    beta = y * y_tick -180

                    depth = depth_img[x,y] + np.random.random()*random_level

                    if depth > 500.:
                        z_offset = depth*np.sin(np.deg2rad(alpha))
                        xy_offset = depth*np.cos(np.deg2rad(alpha))
                        x_offset = xy_offset * np.sin(np.deg2rad(beta))
                        y_offset = xy_offset * np.cos(np.deg2rad(beta))
                        point = np.asarray([x_offset, y_offset, z_offset])
                        coords.append(point + self.camera_centers[i])
                        colors.append(rgb_img[x, y])
                        # normals.append(normalize(normal_img[x, y].reshape(-1, 1)).ravel())
            # break

        coords = np.asarray(coords)
        colors = np.asarray(colors) / 255.0
        # normals = np.asarray(normals)

        coords[:,:2] = np.round(coords[:,:2] / 10) * 10.
        coords[:,2] = np.round(coords[:,2] / 100) * 100.
        unique_coords, unique_ind = np.unique(coords, return_index=True, axis=0)

        coords = coords[unique_ind]
        colors = colors[unique_ind]
        # normals = normals[unique_ind]


        points['coords'] = coords
        points['colors'] = colors
        # points['normals'] = normals

        # if color:
        #     # Getting RGB color
        #     for i in range(len(self.rgb_paths)):
        #         rgb_img = cv2.imread(self.rgb_paths[i])
        #         rgb_img = cv2.cvtColor(rgb_img, code=cv2.COLOR_BGR2RGB)
        #         for x in range(0, rgb_img.shape[0], 2):
        #             for y in range(0, rgb_img.shape[1], 2):
        #                 colors.append(rgb_img[x, y])
        #     points['colors'] = np.asarray(colors)/255.0
        # if normal:
        #     # Getting Normal
        #     for i in range(len(self.normal_paths)):
        #         normal_img = cv2.imread(self.normal_paths[i])
        #         for x in range(0, normal_img.shape[0], 2):
        #             for y in range(0, normal_img.shape[1], 2):
        #                 normals.append(normalize(normal_img[x, y].reshape(-1, 1)).ravel())
        #     points['normals'] = normals

        print("Pointcloud size:", points['coords'].shape[0])
        return points

    def get_point_cloud(self):
        return self.point_cloud

    def generate_density(self, width=256, height=256):

        ps = self.point_cloud["coords"] * -1
        ps[:,0] *= -1
        ps[:,1] *= -1

        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(ps)
        pcd.estimate_normals()

        # zs = np.round(ps[:,2] / 100) * 100
        # zs, zs_ind = np.unique(zs, return_index=True, axis=0)
        # ps_ind = ps[:, :2] ==
        # print("Generate density...")

        image_res = np.array((width, height))

        max_coords = np.max(ps, axis=0)
        min_coords = np.min(ps, axis=0)
        max_m_min = max_coords - min_coords

        max_coords = max_coords + 0.1 * max_m_min
        min_coords = min_coords - 0.1 * max_m_min

        normalization_dict = {}
        normalization_dict["min_coords"] = min_coords
        normalization_dict["max_coords"] = max_coords
        normalization_dict["image_res"] = image_res


        # coordinates = np.round(points[:, :2] / max_coordinates[None,:2] * image_res[None])
        coordinates = \
            np.round(
                (ps[:, :2] - min_coords[None, :2]) / (max_coords[None,:2] - min_coords[None, :2]) * image_res[None])
        coordinates = np.minimum(np.maximum(coordinates, np.zeros_like(image_res)),
                                    image_res - 1)

        density = np.zeros((height, width), dtype=np.float32)

        unique_coordinates, counts = np.unique(coordinates, return_counts=True, axis=0)
        # print(np.unique(counts))
        # counts = np.minimum(counts, 1e2)

        unique_coordinates = unique_coordinates.astype(np.int32)

        density[unique_coordinates[:, 1], unique_coordinates[:, 0]] = counts
        density = density / np.max(density)
        # print(np.unique(density))

        normals = np.array(pcd.normals)
        normals_map = np.zeros((density.shape[0], density.shape[1], 3))

        import time
        start_time = time.time()
        for i, unique_coord in enumerate(unique_coordinates):
            # print(normals[unique_ind])
            normals_indcs = np.argwhere(np.all(coordinates[::10] == unique_coord, axis=1))[:,0]
            normals_map[unique_coordinates[i, 1], unique_coordinates[i, 0], :] = np.mean(normals[::10][normals_indcs, :], axis=0)

        print("Time for normals: ", time.time() - start_time)

        normals_map = (np.clip(normals_map,0,1) * 255).astype(np.uint8)

        # plt.figure()
        # plt.imshow(normals_map)
        # plt.show()

        return density, normals_map, normalization_dict

    def visualize(self, export_path=None):
        pcd = o3d.geometry.PointCloud()

        points = self.point_cloud['coords']

        print(np.max(points, axis=0))
        indices = np.where(points[:, 2] < 2000)

        points = points[indices]
        points[:,1] *= -1
        points[:,:] /= 1000
        pcd.points = o3d.utility.Vector3dVector(points)

        if self.generate_normal:
            normals = self.point_cloud['normals']
            normals = normals[indices]
            pcd.normals = o3d.utility.Vector3dVector(normals)
        if self.generate_color:
            colors = self.point_cloud['colors']
            colors = colors[indices]
            pcd.colors = o3d.utility.Vector3dVector(colors)


        with open("/media/sinisa/Sinisa_hdd_data/Sinisa_Projects/corridor_localisation/Datasets/Structured_3D_dataset/Structured3D/Structured3D_0/Structured3D/train/scene_00015/annotation_3d.json") as file:
            annos = json.load(file)



        # wireframe_geo_list = visualize_wireframe(annos, vis=False, ret=True)
        # o3d.visualization.draw_geometries([pcd] + wireframe_geo_list)
        # o3d.visualization.draw_geometries([pcd])

        pcd.estimate_normals()

        # radii = 0.01
        # mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(pcd, radii)

        # alpha = 0.1
        # tetra_mesh, pt_map = o3d.geometry.TetraMesh.create_from_point_cloud(pcd)
        # mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha, tetra_mesh, pt_map)

        o3d.visualization.draw_geometries([pcd])

        if export_path is not None:

            o3d.io.write_point_cloud(export_path, pcd)

        # o3d.visualization.draw_geometries([pcd])

    def export_ply(self, path):
        '''
        ply
        format ascii 1.0
        comment Mars model by Paul Bourke
        element vertex 259200
        property float x
        property float y
        property float z
        property uchar r
        property uchar g
        property uchar b
        property float nx
        property float ny
        property float nz
        end_header
        '''
        with open(path, "w") as f:
            f.write("ply\n")
            f.write("format ascii 1.0\n")
            f.write("element vertex %d\n" % self.point_cloud['coords'].shape[0])
            f.write("property float x\n")
            f.write("property float y\n")
            f.write("property float z\n")
            if self.generate_color:
                f.write("property uchar red\n")
                f.write("property uchar green\n")
                f.write("property uchar blue\n")
            if self.generate_normal:
                f.write("property float nx\n")
                f.write("property float ny\n")
                f.write("property float nz\n")
            f.write("end_header\n")
            for i in range(self.point_cloud['coords'].shape[0]):
                normal = []
                color = []
                coord = self.point_cloud['coords'][i].tolist()
                if self.generate_color:
                    color = list(map(int, (self.point_cloud['colors'][i]*255).tolist()))
                if self.generate_normal:
                    normal = self.point_cloud['normals'][i].tolist()
                data = coord + color + normal
                f.write(" ".join(list(map(str,data)))+'\n')