File size: 15,457 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# coding=utf-8
import torch
import torch.nn as nn
import numpy as np
from models.mlp import MLP
from models.deformable_transformer import DeformableTransformerEncoderLayer, DeformableTransformerEncoder, \
    DeformableTransformerDecoder, DeformableTransformerDecoderLayer, DeformableAttnDecoderLayer
from models.ops.modules import MSDeformAttn
from models.corner_models import PositionEmbeddingSine
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
import torch.nn.functional as F
from utils.misc import NestedTensor


class HeatEdge(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_feature_levels, backbone_strides, backbone_num_channels, ):
        super(HeatEdge, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.num_feature_levels = num_feature_levels

        if num_feature_levels > 1:
            num_backbone_outs = len(backbone_strides)
            input_proj_list = []
            for _ in range(num_backbone_outs):
                in_channels = backbone_num_channels[_]
                input_proj_list.append(nn.Sequential(
                    nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
                    nn.GroupNorm(32, hidden_dim),
                ))
            for _ in range(num_feature_levels - num_backbone_outs):
                input_proj_list.append(nn.Sequential(
                    nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
                    nn.GroupNorm(32, hidden_dim),
                ))
                in_channels = hidden_dim
            self.input_proj = nn.ModuleList(input_proj_list)
        else:
            self.input_proj = nn.ModuleList([
                nn.Sequential(
                    nn.Conv2d(backbone_num_channels[0], hidden_dim, kernel_size=1),
                    nn.GroupNorm(32, hidden_dim),
                )])

        self.img_pos = PositionEmbeddingSine(hidden_dim // 2)

        self.edge_input_fc = nn.Linear(input_dim * 2, hidden_dim)
        self.output_fc = MLP(input_dim=hidden_dim, hidden_dim=hidden_dim // 2, output_dim=2, num_layers=2)

        self.transformer = EdgeTransformer(d_model=hidden_dim, nhead=8, num_encoder_layers=1,
                                           num_decoder_layers=6, dim_feedforward=1024, dropout=0.1)

    @staticmethod
    def get_ms_feat(xs, img_mask):
        out: Dict[str, NestedTensor] = {}
        for name, x in sorted(xs.items()):
            m = img_mask
            assert m is not None
            mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
            out[name] = NestedTensor(x, mask)
        return out

    def forward(self, image_feats, feat_mask, corner_outputs, edge_coords, edge_masks, gt_values, corner_nums,
                max_candidates, do_inference=False):
        # Prepare ConvNet features
        features = self.get_ms_feat(image_feats, feat_mask)

        srcs = []
        masks = []
        all_pos = []

        new_features = list()
        for name, x in sorted(features.items()):
            new_features.append(x)
        features = new_features

        for l, feat in enumerate(features):
            src, mask = feat.decompose()
            mask = mask.to(src.device)
            srcs.append(self.input_proj[l](src))
            pos = self.img_pos(src).to(src.dtype)
            all_pos.append(pos)
            masks.append(mask)
            assert mask is not None

        if self.num_feature_levels > len(srcs):
            _len_srcs = len(srcs)
            for l in range(_len_srcs, self.num_feature_levels):
                if l == _len_srcs:
                    src = self.input_proj[l](features[-1].tensors)
                else:
                    src = self.input_proj[l](srcs[-1])
                m = feat_mask
                mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0].to(src.device)
                pos_l = self.img_pos(src).to(src.dtype)
                srcs.append(src)
                masks.append(mask)
                all_pos.append(pos_l)

        bs = edge_masks.size(0)
        num_edges = edge_masks.size(1)

        corner_feats = corner_outputs
        edge_feats = list()
        for b_i in range(bs):
            feats = corner_feats[b_i, edge_coords[b_i, :, :, 1], edge_coords[b_i, :, :, 0], :]
            edge_feats.append(feats)
        edge_feats = torch.stack(edge_feats, dim=0)
        edge_feats = edge_feats.view(bs, num_edges, -1)

        edge_inputs = self.edge_input_fc(edge_feats.view(bs * num_edges, -1))
        edge_inputs = edge_inputs.view(bs, num_edges, -1)

        edge_center = (edge_coords[:, :, 0, :].float() + edge_coords[:, :, 1, :].float()) / 2
        edge_center = edge_center / feat_mask.shape[1]

        logits_per_edge, logits_hb, logits_rel, selection_ids, s2_attn_mask, s2_gt_values = self.transformer(srcs,
                                                                                                             masks,
                                                                                                             all_pos,
                                                                                                             edge_inputs,
                                                                                                             edge_center,
                                                                                                             gt_values,
                                                                                                             edge_masks,
                                                                                                             corner_nums,
                                                                                                             max_candidates,
                                                                                                             do_inference)

        return logits_per_edge, logits_hb, logits_rel, selection_ids, s2_attn_mask, s2_gt_values


class EdgeTransformer(nn.Module):
    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
                 activation="relu", return_intermediate_dec=False,
                 num_feature_levels=4, dec_n_points=4, enc_n_points=4,
                 ):
        super(EdgeTransformer, self).__init__()

        encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, enc_n_points)
        self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)

        decoder_attn_layer = DeformableAttnDecoderLayer(d_model, dim_feedforward,
                                                        dropout, activation,
                                                        num_feature_levels, nhead, dec_n_points)
        # one-layer decoder, without self-attention layers
        self.per_edge_decoder = DeformableTransformerDecoder(decoder_attn_layer, 1, False, with_sa=False)

        decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, dec_n_points)

        # edge decoder w/ self-attention layers (image-aware decoder and geom-only decoder)
        self.relational_decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers,
                                                               return_intermediate_dec, with_sa=True)

        self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))

        self.gt_label_embed = nn.Embedding(3, d_model)

        self.input_fc_hb = MLP(input_dim=2 * d_model, hidden_dim=d_model, output_dim=d_model, num_layers=2)
        self.input_fc_rel = MLP(input_dim=2 * d_model, hidden_dim=d_model, output_dim=d_model, num_layers=2)

        self.output_fc_1 = MLP(input_dim=d_model, hidden_dim=d_model // 2, output_dim=2, num_layers=2)
        self.output_fc_2 = MLP(input_dim=d_model, hidden_dim=d_model // 2, output_dim=2, num_layers=2)
        self.output_fc_3 = MLP(input_dim=d_model, hidden_dim=d_model // 2, output_dim=2, num_layers=2)
        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MSDeformAttn):
                m._reset_parameters()
        normal_(self.level_embed)

    def get_valid_ratio(self, mask):
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def forward(self, srcs, masks, pos_embeds, query_embed, reference_points, labels, key_padding_mask, corner_nums,
                max_candidates, do_inference=False):
        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            bs, c, h, w = src.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            src = src.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            src_flatten.append(src)
            mask_flatten.append(mask)
        src_flatten = torch.cat(src_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)

        # encoder
        memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten,
                              mask_flatten)

        # prepare input for decoder
        bs, _, c = memory.shape

        tgt = query_embed

        # per-edge filtering with single-layer decoder (no self-attn)
        hs_per_edge, _ = self.per_edge_decoder(tgt, reference_points, memory,
                                               spatial_shapes, level_start_index, valid_ratios, query_embed,
                                               mask_flatten)
        logits_per_edge = self.output_fc_1(hs_per_edge).permute(0, 2, 1)
        filtered_hs, filtered_mask, filtered_query, filtered_rp, filtered_labels, selected_ids = self.candidate_filtering(
            logits_per_edge,
            hs_per_edge, query_embed, reference_points,
            labels,
            key_padding_mask, corner_nums, max_candidates)
        
        # generate the info for masked training
        if not do_inference:
            filtered_gt_values = self.generate_gt_masking(filtered_labels, filtered_mask)
        else:
            filtered_gt_values = filtered_labels
        gt_info = self.gt_label_embed(filtered_gt_values)

        # relational decoder with image feature (image-aware decoder)
        hybrid_prim_hs = self.input_fc_hb(torch.cat([filtered_hs, gt_info], dim=-1))

        hs, inter_references = self.relational_decoder(hybrid_prim_hs, filtered_rp, memory,
                                                       spatial_shapes, level_start_index, valid_ratios, filtered_query,
                                                       mask_flatten,
                                                       key_padding_mask=filtered_mask, get_image_feat=True)

        logits_final_hb = self.output_fc_2(hs).permute(0, 2, 1)

        # relational decoder without image feature (geom-only decoder)
        rel_prim_hs = self.input_fc_rel(torch.cat([filtered_query, gt_info], dim=-1))

        hs_rel, _ = self.relational_decoder(rel_prim_hs, filtered_rp, memory,
                                            spatial_shapes, level_start_index, valid_ratios, filtered_query,
                                            mask_flatten,
                                            key_padding_mask=filtered_mask, get_image_feat=False)

        logits_final_rel = self.output_fc_3(hs_rel).permute(0, 2, 1)

        return logits_per_edge, logits_final_hb, logits_final_rel, selected_ids, filtered_mask, filtered_gt_values

    @staticmethod
    def candidate_filtering(logits, hs, query, rp, labels, key_padding_mask, corner_nums, max_candidates):
        """
            Filter out the easy-negatives from the edge candidates, and update the edge information correspondingly
        """
        B, L, _ = hs.shape
        preds = logits.detach().softmax(1)[:, 1, :]  # BxL
        preds[key_padding_mask == True] = -1  # ignore the masking parts
        sorted_ids = torch.argsort(preds, dim=-1, descending=True)
        filtered_hs = list()
        filtered_mask = list()
        filtered_query = list()
        filtered_rp = list()
        filtered_labels = list()
        selected_ids = list()
        for b_i in range(B):
            num_candidates = corner_nums[b_i] * 3
            ids = sorted_ids[b_i, :max_candidates[b_i]]
            filtered_hs.append(hs[b_i][ids])
            new_mask = key_padding_mask[b_i][ids]
            new_mask[num_candidates:] = True
            filtered_mask.append(new_mask)
            filtered_query.append(query[b_i][ids])
            filtered_rp.append(rp[b_i][ids])
            filtered_labels.append(labels[b_i][ids])
            selected_ids.append(ids)
        filtered_hs = torch.stack(filtered_hs, dim=0)
        filtered_mask = torch.stack(filtered_mask, dim=0)
        filtered_query = torch.stack(filtered_query, dim=0)
        filtered_rp = torch.stack(filtered_rp, dim=0)
        filtered_labels = torch.stack(filtered_labels, dim=0)
        selected_ids = torch.stack(selected_ids, dim=0)

        return filtered_hs, filtered_mask, filtered_query, filtered_rp, filtered_labels, selected_ids

    @staticmethod
    def generate_gt_masking(labels, mask):
        """
            Generate the info for masked training on-the-fly with ratio=0.5
        """
        bs = labels.shape[0]
        gt_values = torch.zeros_like(mask).long()
        for b_i in range(bs):
            edge_length = (mask[b_i] == 0).sum()
            rand_ratio = np.random.rand() * 0.5 + 0.5
            gt_rand = torch.rand(edge_length)
            gt_flag = torch.zeros(edge_length)
            gt_flag[torch.where(gt_rand >= rand_ratio)] = 1
            gt_idx = torch.where(gt_flag == 1)
            pred_idx = torch.where(gt_flag == 0)
            gt_values[b_i, gt_idx[0]] = labels[b_i, gt_idx[0]]
            gt_values[b_i, pred_idx[0]] = 2  # use 2 to represent unknown value, need to predict
        return gt_values