File size: 21,581 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
'''
Author: [egrt]
Date: 2022-08-23 11:44:15
LastEditors: Egrt
LastEditTime: 2022-11-23 15:25:35
Description: HEAT的模型加载与预测
'''
from turtle import pos
import torch
import torch.nn as nn
from models.resnet import ResNetBackbone
from models.corner_models import HeatCorner
from models.edge_models import HeatEdge
from models.corner_to_edge import get_infer_edge_pairs
from datasets.data_utils import get_pixel_features
from huggingface_hub import hf_hub_download
from PIL import Image
from utils import image_utils
from osgeo import gdal, ogr, osr
from tqdm import tqdm
import os
import scipy
import numpy as np
import cv2
import skimage

class HEAT(object):
    #-----------------------------------------#
    #   注意修改model_path
    #-----------------------------------------#
    _defaults = {
        #-----------------------------------------------#
        #  model_data指向整体网络的地址
        #-----------------------------------------------#
        "model_data"        : 'model_data/heat_checkpoints/checkpoints/ckpts_heat_outdoor_256/checkpoint.pth',
        #-----------------------------------------------#
        #   image_size模型预测图像的像素大小
        #-----------------------------------------------#
        "image_size"       : [256, 256], 
        #-----------------------------------------------#
        #   patch_size为模型切片的大小
        #-----------------------------------------------#
        "patch_size"        : 512,
        #-----------------------------------------------#
        #   patch_overlap为切片重叠像素
        #-----------------------------------------------#
        "patch_overlap"     : 0,
        #-----------------------------------------------#
        #   corner_thresh为预测角点的阈值大小
        #-----------------------------------------------#
        "corner_thresh"     : 0.01,    
        #-----------------------------------------------#
        #   基于角点候选数的最大边数(不能大于6)
        #-----------------------------------------------#
        "corner_to_edge_multiplier": 3,
        #-----------------------------------------------#
        #   边缘推理筛选的迭代次数
        #-----------------------------------------------#
        "infer_times"       : 3,
        #-------------------------------#
        #   是否使用Cuda
        #   没有GPU可以设置成False
        #-------------------------------#
        "cuda"              : False,
    }

    #---------------------------------------------------#
    #   初始化MASKGAN
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)  
        self.generate()

    def generate(self):
        # 从Huggingface加载整体网络模型
        filepath = hf_hub_download(repo_id="Egrt/HEAT", filename="checkpoint.pth")
        self.model = torch.load(filepath)
        # 加载Backbone
        self.backbone = ResNetBackbone()
        strides = self.backbone.strides
        num_channels = self.backbone.num_channels
        self.backbone = nn.DataParallel(self.backbone)
        self.backbone = self.backbone.cuda()
        self.backbone.eval()
        # 加载角点检测模型
        self.corner_model = HeatCorner(input_dim=128, hidden_dim=256, num_feature_levels=4, backbone_strides=strides,
                                backbone_num_channels=num_channels)
        self.corner_model = nn.DataParallel(self.corner_model)
        self.corner_model = self.corner_model.cuda()
        self.corner_model.eval()
        # 加载边缘检测模型
        self.edge_model = HeatEdge(input_dim=128, hidden_dim=256, num_feature_levels=4, backbone_strides=strides,
                            backbone_num_channels=num_channels)
        self.edge_model = nn.DataParallel(self.edge_model)
        self.edge_model = self.edge_model.cuda()
        self.edge_model.eval()
        # 分别加载模型的地址
        self.backbone.load_state_dict(self.model['backbone'])
        self.corner_model.load_state_dict(self.model['corner_model'])
        self.edge_model.load_state_dict(self.model['edge_model'])
            
    def detect_one_image(self, image):
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        # 这里判断图片是否需要分成多个patch
        if image.size[0] < self.patch_size or image.size[1] < self.patch_size:
            is_slice = False
        else:
            is_slice = True
        if is_slice:
            # 复制原图
            image       = np.array(image, dtype=np.uint8)
            # 复制输入的原图
            viz_image   = image.copy()
            height, width = image.shape[0], image.shape[1]
            # 获取缩放比例
            scale = self.patch_size / self.image_size[0]
            # 初始化角点、边缘列表
            pred_corners, pred_confs, pos_edges, edge_confs, c_outputs_np = [], [], [], [], []
            # 开始切分
            stride = self.patch_size - self.patch_overlap
            patch_boundingboxes = image_utils.compute_patch_boundingboxes((height, width),
                                                                      stride=stride,
                                                                      patch_res=self.patch_size)
            edge_len = 0
            # 获取切分后的图片
            for bbox in tqdm(patch_boundingboxes, desc="使用切分进行预测", leave=False):
                # 切分图像
                crop_image = image[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
                # np转Image类
                crop_image = Image.fromarray(crop_image)
                try:
                    pred_corners, pred_confs, pos_edges, edge_confs, c_outputs_np, _ = self.predict_no_patching(crop_image)
                except RuntimeError as e:
                    print("ERROR: " + str(e))
                    print("INFO: 减小patch_size 直到适合内存")
                    raise e
                # 拼接角点数组
                pred_corners[:, 0] = pred_corners[:, 0] * scale + bbox[0]
                pred_corners[:, 1] = pred_corners[:, 1] * scale + bbox[1]
                pred_corners_viz = pred_corners
                viz_image   = visualize_cond_generation(pred_corners_viz, pred_confs, viz_image, edges=pos_edges, 
                                edge_confs=edge_confs, shpfile=False)
            
            hr_image = Image.fromarray(np.uint8(viz_image))
        else:
            pred_corners, pred_confs, pos_edges, edge_confs, c_outputs_np, viz_image = self.predict_no_patching(image)
            #---------------------------------------------------------#
            #   此处推理结束
            #   开始在原图上根据角点坐标绘制角点与边缘
            #---------------------------------------------------------#
            pred_corners_viz = pred_corners
            image_result = visualize_cond_generation(pred_corners_viz, pred_confs, viz_image, edges=pos_edges, 
                            edge_confs=edge_confs, shpfile=True)
            hr_image = Image.fromarray(np.uint8(image_result))
        return hr_image
        
    #---------------------------------------------------------#
    #   不使用切片预测图像
    #   返回预测后的角点坐标、边缘
    #---------------------------------------------------------#      
    def predict_no_patching(self, image):
        image       = image.resize(tuple(self.image_size), Image.BICUBIC)
        # 将Image类转换为numpy
        image       = np.array(image, dtype=np.uint8)
        # 复制输入的原图
        viz_image   = image.copy()
        # preprocess image  numpy->tensor
        image       = process_image(image)
        #   获取所有像素的位置编码, 默认的图像尺度为256
        pixels, pixel_features = get_pixel_features(image_size=self.image_size[0])
        #   开始模型的预测
        with torch.no_grad():

            image_feats, feat_mask, all_image_feats = self.backbone(image)
            pixel_features = pixel_features.unsqueeze(0).repeat(image.shape[0], 1, 1, 1)
            preds_s1       = self.corner_model(image_feats, feat_mask, pixel_features, pixels, all_image_feats)

            c_outputs = preds_s1
            # 获取预测出的角点
            c_outputs_np = c_outputs[0].detach().cpu().numpy()
            # 筛选出大于阈值的角点的坐标
            pos_indices = np.where(c_outputs_np >= self.corner_thresh)
            pred_corners = pixels[pos_indices]
            # 获取对应预测角点的置信度
            pred_confs = c_outputs_np[pos_indices]
            # 根据预测角点的置信度进行非极大抑制
            pred_corners, pred_confs = corner_nms(pred_corners, pred_confs, image_size=c_outputs.shape[1])
            # 对角点两两排列组合,获取所有的角点对
            pred_corners, pred_confs, edge_coords, edge_mask, edge_ids = get_infer_edge_pairs(pred_corners, pred_confs)
            # 获取角点数量
            corner_nums = torch.tensor([len(pred_corners)]).to(image.device)
            max_candidates = torch.stack([corner_nums.max() * self.corner_to_edge_multiplier] * len(corner_nums), dim=0)
            # 无序不重复集合
            all_pos_ids = set()
            # 边缘置信度字典
            all_edge_confs = dict()
            # 推理的迭代次数为3次
            for tt in range(self.infer_times):
                if tt == 0:
                    # gt_values和边缘掩膜大小一样且初始值为0
                    gt_values = torch.zeros_like(edge_mask).long()
                    # 第一二维度的数值设置为2
                    gt_values[:, :] = 2

                # 开始预测边缘
                s1_logits, s2_logits_hb, s2_logits_rel, selected_ids, s2_mask, s2_gt_values = self.edge_model(image_feats, 
                    feat_mask,pixel_features,edge_coords, edge_mask,gt_values, corner_nums,max_candidates,True)
                num_total = s1_logits.shape[2]
                num_selected = selected_ids.shape[1]
                num_filtered = num_total - num_selected
                # 将输出值固定为(0,1)之间的概率分布
                s1_preds = s1_logits.squeeze().softmax(0)
                s2_preds_rel = s2_logits_rel.squeeze().softmax(0)
                s2_preds_hb = s2_logits_hb.squeeze().softmax(0)
                s1_preds_np = s1_preds[1, :].detach().cpu().numpy()
                s2_preds_rel_np = s2_preds_rel[1, :].detach().cpu().numpy()
                s2_preds_hb_np = s2_preds_hb[1, :].detach().cpu().numpy()

                selected_ids = selected_ids.squeeze().detach().cpu().numpy()
                # 进行筛选,将(0.9, 1)之间的设置为T,将(0.01,0.9)之间的设置为U,(0,0.01)之间的设置为F
                if tt != self.infer_times - 1:
                    s2_preds_np = s2_preds_hb_np

                    pos_edge_ids = np.where(s2_preds_np >= 0.9)
                    neg_edge_ids = np.where(s2_preds_np <= 0.01)
                    for pos_id in pos_edge_ids[0]:
                        actual_id = selected_ids[pos_id]
                        if gt_values[0, actual_id] != 2:
                            continue
                        all_pos_ids.add(actual_id)
                        all_edge_confs[actual_id] = s2_preds_np[pos_id]
                        gt_values[0, actual_id] = 1
                    for neg_id in neg_edge_ids[0]:
                        actual_id = selected_ids[neg_id]
                        if gt_values[0, actual_id] != 2:
                            continue
                        gt_values[0, actual_id] = 0
                    num_to_pred = (gt_values == 2).sum()
                    if num_to_pred <= num_filtered:
                        break
                else:
                    s2_preds_np = s2_preds_hb_np

                    pos_edge_ids = np.where(s2_preds_np >= 0.5)
                    for pos_id in pos_edge_ids[0]:
                        actual_id = selected_ids[pos_id]
                        if s2_mask[0][pos_id] is True or gt_values[0, actual_id] != 2:
                            continue
                        all_pos_ids.add(actual_id)
                        all_edge_confs[actual_id] = s2_preds_np[pos_id]
            pos_edge_ids = list(all_pos_ids)
            edge_confs = [all_edge_confs[idx] for idx in pos_edge_ids]
            pos_edges = edge_ids[pos_edge_ids].cpu().numpy()
            edge_confs = np.array(edge_confs)

            if self.image_size[0] != 256:
                pred_corners = pred_corners / (self.image_size[0] / 256)

        return pred_corners, pred_confs, pos_edges, edge_confs, c_outputs_np, viz_image
#---------------------------------------------------------#
#   将图像转换成RGB图像,防止灰度图在预测时报错。
#   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
#---------------------------------------------------------#
def cvtColor(image):
    if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
        return image 
    else:
        image = image.convert('RGB')
        return image 
#---------------------------------------------------------#
#   根据角点的置信度排序,并筛选出大于置信度的角点坐标
#---------------------------------------------------------#
def corner_nms(preds, confs, image_size):
    data = np.zeros([image_size, image_size])
    neighborhood_size = 5
    threshold = 0

    for i in range(len(preds)):
        data[preds[i, 1], preds[i, 0]] = confs[i]

    data_max = scipy.ndimage.filters.maximum_filter(data, neighborhood_size)
    maxima = (data == data_max)
    data_min = scipy.ndimage.filters.minimum_filter(data, neighborhood_size)
    diff = ((data_max - data_min) > threshold)
    maxima[diff == 0] = 0

    results = np.where(maxima > 0)
    filtered_preds = np.stack([results[1], results[0]], axis=-1)

    new_confs = list()
    for i, pred in enumerate(filtered_preds):
        new_confs.append(data[pred[1], pred[0]])
    new_confs = np.array(new_confs)

    return filtered_preds, new_confs

def process_image(img):
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    img = skimage.img_as_float(img)
    img = img.transpose((2, 0, 1))
    img = (img - np.array(mean)[:, np.newaxis, np.newaxis]) / np.array(std)[:, np.newaxis, np.newaxis]
    img = torch.Tensor(img).cuda()
    img = img.unsqueeze(0)
    return img

def postprocess_preds(corners, confs, edges):
    corner_degrees = dict()
    for edge_i, edge_pair in enumerate(edges):
        corner_degrees[edge_pair[0]] = corner_degrees.setdefault(edge_pair[0], 0) + 1
        corner_degrees[edge_pair[1]] = corner_degrees.setdefault(edge_pair[1], 0) + 1
    good_ids = [i for i in range(len(corners)) if i in corner_degrees]
    if len(good_ids) == len(corners):
        return corners, confs, edges
    else:
        good_corners = corners[good_ids]
        good_confs = confs[good_ids]
        id_mapping = {value: idx for idx, value in enumerate(good_ids)}
        new_edges = list()
        for edge_pair in edges:
            new_pair = (id_mapping[edge_pair[0]], id_mapping[edge_pair[1]])
            new_edges.append(new_pair)
        new_edges = np.array(new_edges)
        return good_corners, good_confs, new_edges

#---------------------------------------------------------#
#   将输入图像根据角点坐标进行可视化处理
#   不同于源代码,我们需要直接返回图像对象而不是保存到指定地址
#---------------------------------------------------------#
def visualize_cond_generation(positive_pixels, confs, image, gt_corners=None, prec=None, recall=None,
                              image_masks=None, edges=None, edge_confs=None, shpfile=False):
    # 复制原图  
    image = image.copy()
    if confs is not None:
        viz_confs = confs

    if edges is not None:
        preds = positive_pixels.astype(int)
        c_degrees = dict()
        for edge_i, edge_pair in enumerate(edges):
            conf = (edge_confs[edge_i] * 2) - 1
            cv2.line(image, tuple(preds[edge_pair[0]]), tuple(preds[edge_pair[1]]), (255 * conf, 255 * conf, 0), 2)
            c_degrees[edge_pair[0]] = c_degrees.setdefault(edge_pair[0], 0) + 1
            c_degrees[edge_pair[1]] = c_degrees.setdefault(edge_pair[1], 0) + 1

    for idx, c in enumerate(positive_pixels):
        if edges is not None and idx not in c_degrees:
            continue
        if confs is None:
            cv2.circle(image, (int(c[0]), int(c[1])), 3, (0, 0, 255), -1)
        else:
            cv2.circle(image, (int(c[0]), int(c[1])), 3, (0, 0, 255 * viz_confs[idx]), -1)
        # if edges is not None:
        #    cv2.putText(image, '{}'.format(c_degrees[idx]), (int(c[0]), int(c[1] - 5)), cv2.FONT_HERSHEY_SIMPLEX,
        #                0.5, (255, 0, 0), 1, cv2.LINE_AA)

    if gt_corners is not None:
        for c in gt_corners:
            cv2.circle(image, (int(c[0]), int(c[1])), 3, (0, 255, 0), -1)

    if image_masks is not None:
        mask_ids = np.where(image_masks == 1)[0]
        for mask_id in mask_ids:
            y_idx = mask_id // 64
            x_idx = (mask_id - y_idx * 64)
            x_coord = x_idx * 4
            y_coord = y_idx * 4
            cv2.rectangle(image, (x_coord, y_coord), (x_coord + 3, y_coord + 3), (127, 127, 0), thickness=-1)

    # if confs is not None:
    #    cv2.putText(image, 'max conf: {:.3f}'.format(confs.max()), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,
    #                0.5, (255, 255, 0), 1, cv2.LINE_AA)
    if prec is not None:
        if isinstance(prec, tuple):
            cv2.putText(image, 'edge p={:.2f}, edge r={:.2f}'.format(prec[0], recall[0]), (20, 20),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, (255, 255, 0), 1, cv2.LINE_AA)
            cv2.putText(image, 'region p={:.2f}, region r={:.2f}'.format(prec[1], recall[1]), (20, 40),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, (255, 255, 0), 1, cv2.LINE_AA)
        else:
            cv2.putText(image, 'prec={:.2f}, recall={:.2f}'.format(prec, recall), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, (255, 255, 0), 1, cv2.LINE_AA)

    # 是否生成shp文件
    if shpfile:
        preds = positive_pixels.astype(int)
        # 获取点列表
        Polyline = []
        for edge_i, edge_pair in enumerate(edges):
            Polyline.append([preds[edge_pair[0]], preds[edge_pair[1]]])
        Polyline = np.array(Polyline, dtype=np.int32)
        # 写入shp文件
        writeShp(save_file_dir="shpfile", Polyline=Polyline)


    return image

def writeShp(save_file_dir="shpfile", Polyline=None):
    # 创建文件夹
    if os.path.exists(save_file_dir) is False:
        os.makedirs(save_file_dir)
    # 支持中文路径
    gdal.SetConfigOption("GDAL_FILENAME_IS_UTF8", "YES")
    # 属性表字段支持中文
    gdal.SetConfigOption("SHAPE_ENCODING", "UTF-8")
    # 注册驱动
    ogr.RegisterAll()
    # 创建shp数据
    strDriverName = "ESRI Shapefile"
    oDriver = ogr.GetDriverByName(strDriverName)
    if oDriver == None:
        return "驱动不可用:"+strDriverName
    # 创建数据源
    file_path = os.path.join(save_file_dir, "result.shp")
    oDS = oDriver.CreateDataSource(file_path)
    if oDS == None:
        return "创建文件失败:result.shp"
    if Polyline is not None:
        # 创建一个多边形图层,指定坐标系为WGS84
        papszLCO = []
        geosrs = osr.SpatialReference()
        geosrs.SetWellKnownGeogCS("WGS84")
        # 线:ogr_type = ogr.wkbLineString
        # 点:ogr_type = ogr.wkbPoint
        ogr_type = ogr.wkbMultiLineString
        # 面的类型为Polygon,线的类型为Polyline,点的类型为Point
        oLayer = oDS.CreateLayer("Polyline", geosrs, ogr_type, papszLCO)
        if oLayer == None:
            return "图层创建失败!"
        # 创建属性表
        # 创建id字段
        oId = ogr.FieldDefn("id", ogr.OFTInteger)
        oLayer.CreateField(oId, 1)
        # 创建name字段
        oName = ogr.FieldDefn("name", ogr.OFTString)
        oLayer.CreateField(oName, 1)
        oDefn = oLayer.GetLayerDefn()
        # 创建要素
        # 数据集
        # wkt_geom id name
        point_str_list = ['({} {},{} {})'.format(row[0, 0], row[0, 1], row[1, 0], row[1, 1]) for row in Polyline]
        Polyline_Wkt = ','.join(point_str_list)
        features = ['Polyline0;MULTILINESTRING({})'.format(Polyline_Wkt)]
        for index, f in enumerate(features):
            oFeaturePolygon = ogr.Feature(oDefn)
            oFeaturePolygon.SetField("id",index)
            oFeaturePolygon.SetField("name",f.split(";")[0])
            geomPolygon = ogr.CreateGeometryFromWkt(f.split(";")[1])
            oFeaturePolygon.SetGeometry(geomPolygon)
            oLayer.CreateFeature(oFeaturePolygon)
        # 创建完成后,关闭进程
        oDS.Destroy()
    return "数据集创建完成!"