File size: 14,491 Bytes
c9843cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import numbers
import random
import math
import warnings
import numpy as np
from PIL import Image, ImageEnhance, ImageOps


class ShearX(object):
    def __init__(self, fillcolor=(128, 128, 128)):
        self.fillcolor = fillcolor

    def __call__(self, x, magnitude):
        return x.transform(
            x.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0),
            Image.BICUBIC, fillcolor=self.fillcolor)


class ShearY(object):
    def __init__(self, fillcolor=(128, 128, 128)):
        self.fillcolor = fillcolor

    def __call__(self, x, magnitude):
        return x.transform(
            x.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0),
            Image.BICUBIC, fillcolor=self.fillcolor)


class TranslateX(object):
    def __init__(self, fillcolor=(128, 128, 128)):
        self.fillcolor = fillcolor

    def __call__(self, x, magnitude):
        return x.transform(
            x.size, Image.AFFINE, (1, 0, magnitude * x.size[0] * random.choice([-1, 1]), 0, 1, 0),
            fillcolor=self.fillcolor)


class TranslateY(object):
    def __init__(self, fillcolor=(128, 128, 128)):
        self.fillcolor = fillcolor

    def __call__(self, x, magnitude):
        return x.transform(
            x.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * x.size[1] * random.choice([-1, 1])),
            fillcolor=self.fillcolor)


class Rotate(object):
    # from https://stackoverflow.com/questions/
    # 5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
    def __call__(self, x, magnitude):
        rot = x.convert("RGBA").rotate(magnitude * random.choice([-1, 1]))
        return Image.composite(rot, Image.new("RGBA", rot.size, (128,) * 4), rot).convert(x.mode)


class Color(object):
    def __call__(self, x, magnitude):
        return ImageEnhance.Color(x).enhance(1 + magnitude * random.choice([-1, 1]))


class Posterize(object):
    def __call__(self, x, magnitude):
        return ImageOps.posterize(x, magnitude)


class Solarize(object):
    def __call__(self, x, magnitude):
        return ImageOps.solarize(x, magnitude)


class Contrast(object):
    def __call__(self, x, magnitude):
        return ImageEnhance.Contrast(x).enhance(1 + magnitude * random.choice([-1, 1]))


class Sharpness(object):
    def __call__(self, x, magnitude):
        return ImageEnhance.Sharpness(x).enhance(1 + magnitude * random.choice([-1, 1]))


class Brightness(object):
    def __call__(self, x, magnitude):
        return ImageEnhance.Brightness(x).enhance(1 + magnitude * random.choice([-1, 1]))


class AutoContrast(object):
    def __call__(self, x, magnitude):
        return ImageOps.autocontrast(x)


class Equalize(object):
    def __call__(self, x, magnitude):
        return ImageOps.equalize(x)


class Invert(object):
    def __call__(self, x, magnitude):
        return ImageOps.invert(x)


class ImageNetPolicy(object):
    """ Randomly choose one of the best 24 Sub-policies on ImageNet.
        Example:
        >>> policy = ImageNetPolicy()
        >>> transformed = policy(image)
        Example as a PyTorch Transform:
        >>> transform = transforms.Compose([
        >>>     transforms.Resize(256),
        >>>     ImageNetPolicy(),
        >>>     transforms.ToTensor()])
    """
    def __init__(self, fillcolor=(128, 128, 128)):
        self.policies = [
            SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor),
            SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
            SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor),
            SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor),
            SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),

            SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor),
            SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor),
            SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor),
            SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor),
            SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor),

            SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor),
            SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor),
            SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor),
            SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
            SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),

            SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor),
            SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor),
            SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor),
            SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor),
            SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor),

            SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
            SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
            SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
            SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
            SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor)
        ]

    def __call__(self, img):
        policy_idx = random.randint(0, len(self.policies) - 1)
        return self.policies[policy_idx](img)

    def __repr__(self):
        return "AutoAugment ImageNet Policy"

class SubPolicy(object):
    def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor=(128, 128, 128)):
        ranges = {
            "shearX": np.linspace(0, 0.3, 10),
            "shearY": np.linspace(0, 0.3, 10),
            "translateX": np.linspace(0, 150 / 331, 10),
            "translateY": np.linspace(0, 150 / 331, 10),
            "rotate": np.linspace(0, 30, 10),
            "color": np.linspace(0.0, 0.9, 10),
            "posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
            "solarize": np.linspace(256, 0, 10),
            "contrast": np.linspace(0.0, 0.9, 10),
            "sharpness": np.linspace(0.0, 0.9, 10),
            "brightness": np.linspace(0.0, 0.9, 10),
            "autocontrast": [0] * 10,
            "equalize": [0] * 10,
            "invert": [0] * 10
        }

        func = {
            "shearX": ShearX(fillcolor=fillcolor),
            "shearY": ShearY(fillcolor=fillcolor),
            "translateX": TranslateX(fillcolor=fillcolor),
            "translateY": TranslateY(fillcolor=fillcolor),
            "rotate": Rotate(),
            "color": Color(),
            "posterize": Posterize(),
            "solarize": Solarize(),
            "contrast": Contrast(),
            "sharpness": Sharpness(),
            "brightness": Brightness(),
            "autocontrast": AutoContrast(),
            "equalize": Equalize(),
            "invert": Invert()
        }

        self.p1 = p1
        self.operation1 = func[operation1]
        self.magnitude1 = ranges[operation1][magnitude_idx1]
        self.p2 = p2
        self.operation2 = func[operation2]
        self.magnitude2 = ranges[operation2][magnitude_idx2]

    def __call__(self, img):
        if random.random() < self.p1:
            img = self.operation1(img, self.magnitude1)
        if random.random() < self.p2:
            img = self.operation2(img, self.magnitude2)
        return img

def crop(img, i, j, h, w):
    """Crop the given PIL Image.

    Args:
        img (PIL Image): Image to be cropped.
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the cropped image.
        w (int): Width of the cropped image.

    Returns:
        PIL Image: Cropped image.
    """
    return img.crop((j, i, j + w, i + h))

def resize(img, size, interpolation=Image.BILINEAR):
    r"""Resize the input PIL Image to the given size.

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaing
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)

def center_crop(img, output_size):
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    w, h = img.size
    th, tw = output_size
    i = int(round((h - th) / 2.))
    j = int(round((w - tw) / 2.))
    return crop(img, i, j, th, tw)

def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR):
    """Crop the given PIL Image and resize it to desired size.

    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.

    Args:
        img (PIL Image): Image to be cropped.
        i (int): i in (i,j) i.e coordinates of the upper left corner
        j (int): j in (i,j) i.e coordinates of the upper left corner
        h (int): Height of the cropped image.
        w (int): Width of the cropped image.
        size (sequence or int): Desired output size. Same semantics as ``resize``.
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    img = crop(img, i, j, h, w)
    img = resize(img, size, interpolation)
    return img

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size           = size
        self.interpolation  = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return resize(img, self.size, self.interpolation)
    
class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return center_crop(img, self.size)

class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
        self.size = size
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        self.interpolation = interpolation
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        area = img.size[0] * img.size[1]

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if (in_ratio < min(ratio)):
            w = img.size[0]
            h = int(round(w / min(ratio)))
        elif (in_ratio > max(ratio)):
            h = img.size[1]
            w = int(round(h * max(ratio)))
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
        j = (img.size[0] - w) // 2
        return i, j, h, w

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        return resized_crop(img, i, j, h, w, self.size, self.interpolation)