File size: 4,623 Bytes
c9843cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import csv
import os

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

def evaluteTop1_5(classfication, lines, metrics_out_path):
    correct_1 = 0
    correct_5 = 0
    preds   = []
    labels  = []
    total = len(lines)
    for index, line in enumerate(lines):
        annotation_path = line.split(';')[1].split()[0]
        x = Image.open(annotation_path)
        y = int(line.split(';')[0])

        pred        = classfication.detect_image(x)
        pred_1      = np.argmax(pred)
        correct_1   += pred_1 == y
        
        pred_5      = np.argsort(pred)[::-1]
        pred_5      = pred_5[:5]
        correct_5   += y in pred_5
        
        preds.append(pred_1)
        labels.append(y)
        if index % 100 == 0:
            print("[%d/%d]"%(index, total))
            
    hist        = fast_hist(np.array(labels), np.array(preds), len(classfication.class_names))
    Recall      = per_class_Recall(hist)
    Precision   = per_class_Precision(hist)
    
    show_results(metrics_out_path, hist, Recall, Precision, classfication.class_names)
    return correct_1 / total, correct_5 / total, Recall, Precision

def fast_hist(a, b, n):
    k = (a >= 0) & (a < n)
    return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)  

def per_class_Recall(hist):
    return np.diag(hist) / np.maximum(hist.sum(1), 1) 

def per_class_Precision(hist):
    return np.diag(hist) / np.maximum(hist.sum(0), 1) 

def adjust_axes(r, t, fig, axes):
    bb                  = t.get_window_extent(renderer=r)
    text_width_inches   = bb.width / fig.dpi
    current_fig_width   = fig.get_figwidth()
    new_fig_width       = current_fig_width + text_width_inches
    propotion           = new_fig_width / current_fig_width
    x_lim               = axes.get_xlim()
    axes.set_xlim([x_lim[0], x_lim[1] * propotion])

def draw_plot_func(values, name_classes, plot_title, x_label, output_path, tick_font_size = 12, plt_show = True):
    fig     = plt.gcf() 
    axes    = plt.gca()
    plt.barh(range(len(values)), values, color='royalblue')
    plt.title(plot_title, fontsize=tick_font_size + 2)
    plt.xlabel(x_label, fontsize=tick_font_size)
    plt.yticks(range(len(values)), name_classes, fontsize=tick_font_size)
    r = fig.canvas.get_renderer()
    for i, val in enumerate(values):
        str_val = " " + str(val) 
        if val < 1.0:
            str_val = " {0:.2f}".format(val)
        t = plt.text(val, i, str_val, color='royalblue', va='center', fontweight='bold')
        if i == (len(values)-1):
            adjust_axes(r, t, fig, axes)

    fig.tight_layout()
    fig.savefig(output_path)
    if plt_show:
        plt.show()
    plt.close()
    
def show_results(miou_out_path, hist, Recall, Precision, name_classes, tick_font_size = 12):
    draw_plot_func(Recall, name_classes, "mRecall = {0:.2f}%".format(np.nanmean(Recall)*100), "Recall", \
        os.path.join(miou_out_path, "Recall.png"), tick_font_size = tick_font_size, plt_show = False)
    print("Save Recall out to " + os.path.join(miou_out_path, "Recall.png"))

    draw_plot_func(Precision, name_classes, "mPrecision = {0:.2f}%".format(np.nanmean(Precision)*100), "Precision", \
        os.path.join(miou_out_path, "Precision.png"), tick_font_size = tick_font_size, plt_show = False)
    print("Save Precision out to " + os.path.join(miou_out_path, "Precision.png"))

    with open(os.path.join(miou_out_path, "confusion_matrix.csv"), 'w', newline='') as f:
        writer          = csv.writer(f)
        writer_list     = []
        writer_list.append([' '] + [str(c) for c in name_classes])
        for i in range(len(hist)):
            writer_list.append([name_classes[i]] + [str(x) for x in hist[i]])
        writer.writerows(writer_list)
    print("Save confusion_matrix out to " + os.path.join(miou_out_path, "confusion_matrix.csv"))
            
def evaluteRecall(classfication, lines, metrics_out_path):
    correct = 0
    total = len(lines)
    
    preds   = []
    labels  = []
    for index, line in enumerate(lines):
        annotation_path = line.split(';')[1].split()[0]
        x = Image.open(annotation_path)
        y = int(line.split(';')[0])

        pred = classfication.detect_image(x)
        pred = np.argmax(pred)
        
        preds.append(pred)
        labels.append(y)
        
    hist        = fast_hist(labels, preds, len(classfication.class_names))
    Recall      = per_class_Recall(hist)
    Precision   = per_class_Precision(hist)
    
    show_results(metrics_out_path, hist, Recall, Precision, classfication.class_names)
    return correct / total