File size: 7,551 Bytes
a4200f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import pdfplumber
import streamlit as st
import requests
import json
import redis
import redis.commands.search
from redis.commands.search.field import TagField, VectorField, TextField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
import logging
from redis.commands.search.query import Query
import numpy as np
from typing import List, Dict, Any
from semantic_text_splitter import TextSplitter
from tokenizers import Tokenizer
from sentence_transformers import SentenceTransformer
from utlis.constant import *
from PIL import Image
import google.generativeai as genai
genai.configure(api_key="AIzaSyAhz9UBzkEIYI886zZRm40qqB1Kd_9Y4-0")

def initialize_session_state():
    if "token" not in st.session_state:
        st.session_state["token"] ="abcd"
    if "service" not in st.session_state:
        st.session_state["service"] = None
    if "use_document" not in st.session_state:
        st.session_state.use_document = False
    if "flag" not in st.session_state:
        st.session_state.flag = False
    if "embdding_model" not in st.session_state:
        st.session_state["embdding_model"] = None
    if "indexing_method" not in st.session_state:
        st.session_state["indexing_method"] = None
    if "uploaded_files" not in st.session_state:
        st.session_state["uploaded_files"] = None
    
    if "messages" not in st.session_state:
        st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]


def extract_text_from_pdf(pdf_path):
    text=""
    with pdfplumber.open(pdf_path) as pdf:
        for page_number, page in enumerate(pdf.pages, start=1):
            # Try to extract the text
            text+= page.extract_text(x_tolerance=2, y_tolerance=4, layout=True, x_density=5, y_density=10)
    return text

def delete_service(token,service_slected_to_delete):
    for srevice_name in service_slected_to_delete:
        url = REMOVE_SERVICE_API
        # JSON payload to be sent
        data = {
            "token": token,
            "servicename": srevice_name
            }
        json_data = json.dumps(data)

        # Set the headers to specify that the content type is JSON
        headers = {'Content-Type': 'application/json'}

        # Send the POST request
        response = requests.post(url, data=json_data, headers=headers)
        if json.loads( response.text).get("success")==True:
            st.success(f"{srevice_name} deleted successfully")
        else:
            st.error(f"{srevice_name} not deleted successfully")
        
def delete_document(token, service,document_slected_to_delete):
    
    for document_name in document_slected_to_delete:
        url = REMOVE_DOCUMENT_API
        # JSON payload to be sent
        data = {                  
    "token": token,
    "servicename": service,
    "documentname":document_name}

        # Convert the dictionary to a JSON formatted string
        json_data = json.dumps(data)

        # Set the headers to specify that the content type is JSON
        headers = {'Content-Type': 'application/json'}

        # Send the POST request
        response = requests.post(url, data=json_data, headers=headers)
        if json.loads( response.text).get("status")=="success":
            st.success(f"{document_name} deleted successfully")
        else:
            st.error(f"{document_name} not deleted successfully")
def gemini_vision(file):
    load_image = Image.open(file)
    prompt= "please extract all text fromt this image"
    model = genai.GenerativeModel('gemini-pro-vision')
    response = model.generate_content([prompt, load_image])

    return response.text
def add_service(token,servicename,embdding_model):
    url = ADD_SERVICES_API
    # JSON payload to be sent
    data = {
        "token": token,
        "services": [
            {
                "servicename": servicename,
                "modelname": embdding_model
            }
        ]
    }

    # Convert the dictionary to a JSON formatted string
    json_data = json.dumps(data)

    # Set the headers to specify that the content type is JSON
    headers = {'Content-Type': 'application/json'}

    # Send the POST request
    response = requests.post(url, data=json_data, headers=headers)
    if json.loads( response.text).get("added_services"):
        st.success(f"{servicename} added successfully")
    else:
        st.error(response.text)
def add_document(token,servicename):
    

    for file in st.session_state.uploaded_files: 
        if file.type.split('/')[-1]=='pdf':
            text= extract_text_from_pdf(file)
        else:
            text = gemini_vision(file)
            print(text)
        if text:
            url = CHUNK_STORE_API

            # JSON payload to be sent
            document_name = file.name.replace(" ","")
            #document_name = document_name.replace(".pdf","")
            document_name = document_name.replace("(","_")
            document_name = document_name.replace(")","_")
            document_name = document_name.replace("-","_")
            data = {
                "text": text,
                "document_name":document_name,
                "user_id": token,
                "service_name": servicename
            }

            # Convert the dictionary to a JSON formatted string
            json_data = json.dumps(data)

            # Set the headers to specify that the content type is JSON
            headers = {'Content-Type': 'application/json'}

            # Send the POST request
            response = requests.post(url, data=json_data, headers=headers)
            document_name = file.name.replace(" ","_")
            if json.loads( response.text).get("success")==True:
                st.success(f"{document_name} uploaded successfully")
            else:
                st.error(f"{document_name} not uploaded successfully")
        else:
            st.error("we can't extract text from {}".format(file.name))


def get_context(prompt,token,service_name,top_k):
    url = SEARCH_API
    # JSON payload to be sent
    data = {
    "userid": token,
    "service_name": service_name,
    "query_str": prompt,
    "document_names":st.session_state.doument_slected_to_chat ,
    "top_k": top_k
    }

    # Convert the dictionary to a JSON formatted string
    json_data = json.dumps(data)

    # Set the headers to specify that the content type is JSON
    headers = {'Content-Type': 'application/json'}

    # Send the POST request
    response = requests.post(url, data=json_data, headers=headers)

    if json.loads( response.text).get("results"):
        context = []
        for chunk in json.loads( response.text).get("results"):
             context.append(chunk['chunk']) 
        return context   
    else:
         return []

def query(payload):
	response = requests.post(API_URL, headers=HEADERS, json=payload)
	return response.json()
	

def generate_response(llm_name, question, context = None):
    url = CHAT_API
    #st.chat_message("assistant", avatar="🤖").write(context)
    # JSON payload to be sent
    data = {
        "context": context,
        "question": question,
        "model_name": llm_name,
    }

    # Convert the dictionary to a JSON formatted string
    json_data = json.dumps(data)

    # Set the headers to specify that the content type is JSON
    headers = {'Content-Type': 'application/json'}

    # Send the POST request
    response = requests.post(url, data=json_data, headers=headers)
    return json.loads( response.text).get("response", "429 Quota exceeded for quota metric.")