File size: 13,055 Bytes
c398ab5
49ffc7b
 
c398ab5
49ffc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c398ab5
 
 
 
49ffc7b
c398ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1903e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c398ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31bfcd
 
 
 
 
 
 
c398ab5
f31bfcd
 
 
 
 
c1903e3
 
f31bfcd
 
c398ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1903e3
 
 
 
 
 
c398ab5
49ffc7b
 
 
 
 
 
 
 
 
c398ab5
49ffc7b
 
 
 
 
 
 
 
c398ab5
f31bfcd
 
 
 
 
 
 
 
 
 
 
 
 
 
2c25c3e
f31bfcd
c1903e3
 
f31bfcd
 
 
 
 
 
 
 
 
 
 
 
c1903e3
 
c398ab5
c1903e3
5eadc60
c1903e3
 
 
 
 
 
 
 
c398ab5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from utlis.helper import *
import sqlite3
import hashlib

def create_document_id(token, service_selected, document_selected):
    # Create a unique document ID from token, service, and document name
    unique_id = f"{token}{service_selected}{document_selected}"
    # Hash the unique ID using SHA-256
    hashed_id = hashlib.sha256(unique_id.encode()).hexdigest()
    return hashed_id

def create_database():
    conn = sqlite3.connect('document_cache.db')
    c = conn.cursor()
    # Create table for schemas
    c.execute('''CREATE TABLE IF NOT EXISTS schemas
                 (document_id TEXT PRIMARY KEY, schema TEXT)''')
    # Create table for comments
    c.execute('''CREATE TABLE IF NOT EXISTS comments
                 (document_id TEXT PRIMARY KEY, comments TEXT)''')
    conn.commit()
    conn.close()

create_database()
initialize_session_state()

with st.sidebar:
    st.image("logo.png", width=170)
    st.title("AGDS")
    # Get List of models
    llms = ['gpt-3.5-turbo', 'gemini']
    st.session_state.llm = st.selectbox("Choose LLM",llms)
    st.session_state.genre = st.radio(
    "Choose option",
    ["Select document", "Add document(s)","Delete service(s)", "Delete document(s)"])
    
    if st.session_state.genre=="Add document(s)":
        st.title('Add Document(s)')
        # Check service status
        # Get all available services
        add_new_service = st.checkbox("Add new service")
        if add_new_service:
            new_service = st.text_input("Enter service name")
            # Get list of Embedding models
            
            if  new_service and st.button('Add'):
                add_service(st.session_state.token,new_service)
        data = {"token": st.session_state.token}
        json_data = json.dumps(data)
        headers = {'Content-Type': 'application/json'}
        services  = requests.get(SERVICES_API,data=json_data, headers=headers)
        services =json.loads(services.text)
        if len(services)>0:
           st.session_state.service = st.selectbox("Choose Service",services)


        if len(services)>0:
            st.session_state.doc_ortext = st.radio("Choose option",["Documnt", "Text area"])
            if st.session_state.doc_ortext=="Documnt":
                st.session_state.uploaded_files = st.file_uploader("Upload PDF file",  type=["pdf","txt"], accept_multiple_files=False)
                if st.session_state.uploaded_files:
                    st.session_state.process = st.button('Process')
                    if st.session_state.process:
                        add_document(st.session_state.token,st.session_state.service)
            # elif st.session_state.doc_ortext=="Text area":
            #     st.session_state.name_text_area = st.container().text_area("Enter name of the text area")
            #     st.session_state.text_area = st.container().text_area("Enter text")

            #     if st.session_state.text_area:
            #         st.session_state.process = st.container().button('Process')
            #         if st.session_state.process:
            #             add_text_document(st.session_state.token,st.session_state.service)

    elif st.session_state.genre=="Select document":
        st.title('Scrape Document')
        data = {"token": st.session_state.token}
        json_data = json.dumps(data)
        headers = {'Content-Type': 'application/json'}
        services  = requests.get(SERVICES_API,data=json_data, headers=headers)
        services =json.loads(services.text)

        if len(services)>0:
            st.session_state.service_slected_to_chat = st.selectbox("Choose Service",services)
            data = {"token": st.session_state.token, "servicename": st.session_state.service_slected_to_chat}
            json_data = json.dumps(data)
            headers = {'Content-Type': 'application/json'}
            history_document  = requests.get(DOCUMENT_API,data=json_data, headers=headers)
            history_document =json.loads(history_document.text).get("documents",[])
            history_document = [doc["documentname"] for doc in history_document]
            st.session_state.doument_slected_to_chat = st.selectbox("Choose Documnet",history_document)
            if st.session_state.doument_slected_to_chat.split("_")[-1]=="pdf":
                data = {"token": st.session_state.token, "service_name": st.session_state.service_slected_to_chat,"document_name":st.session_state.doument_slected_to_chat}
                json_data = json.dumps(data)
                headers = {'Content-Type': 'application/json'}
                number_pages = requests.get(GET_NUM_PAGES,data=json_data, headers=headers)
                number_pages =json.loads(number_pages.text).get("num_pages")
                page_options = list(range(1, int(number_pages) + 1))

                st.session_state.start_page = st.selectbox("Start Page",page_options)
                st.session_state.end_page = st.selectbox("End Page", page_options, index=len(page_options) - 1)
                st.session_state.method = st.selectbox("Chunking Method", ["chunk_per_page", "personalize_chunking"])
                if st.session_state.method=="personalize_chunking":
                    st.session_state.split_token = st.text_area("Split Token")
            #elif st.session_state.doument_slected_to_chat.split("_")[-1]=="txt":
            else:
                st.session_state.method = st.selectbox("Chunking Method", ["personalize_chunking"])
                st.session_state.split_token = st.text_area("Split Token")
        else:
            st.session_state.service_slected_to_chat = None

            
    elif st.session_state.genre == "Delete service(s)":
        st.title('Delete Service(s)')
        data = {"token": st.session_state.token}
        json_data = json.dumps(data)
        headers = {'Content-Type': 'application/json'}
        services  = requests.get(SERVICES_API,data=json_data, headers=headers)
        services =json.loads(services.text)
        if len(services)>=2:
            services.append("ALL")
            # Get list of documents from histrory
        if "ALL" in services:
            service_slected = st.multiselect(
                    "",services ,default="ALL"
                    )
        elif len(services)==1:
            service_slected = st.multiselect(
                    "",services,default=services[0]
                    )
        else:
            service_slected = st.multiselect(
                    "",services
                    )
        if "ALL" in service_slected:
            service_slected = services
            service_slected.remove("ALL")
        st.write("You selected:", service_slected)

        if len(service_slected) > 0:
            st.session_state.delete = st.button('Delete')
            if st.session_state.delete:
                delete_service(st.session_state.token ,service_slected)
        
    elif st.session_state.genre == "Delete document(s)":
        st.title('Delete Document(s)')
        data = {"token": st.session_state.token}
        json_data = json.dumps(data)
        headers = {'Content-Type': 'application/json'}
        services  = requests.get(SERVICES_API,data=json_data, headers=headers)
        services =json.loads(services.text)
        if len(services)>0:
            service = st.selectbox("Choose Service",services)
            data = {"token": st.session_state.token, "servicename": service}
            json_data = json.dumps(data)
            headers = {'Content-Type': 'application/json'}
            history_document  = requests.get(DOCUMENT_API,data=json_data, headers=headers)
            history_document =json.loads(history_document.text).get("documents",[])
            history_document = [doc["documentname"] for doc in history_document]
            if len(history_document)>=2:
                history_document.append("ALL")
            # Get list of documents from histrory
            if "ALL" in history_document:
                document_slected_to_delete = st.multiselect(
                    "",history_document ,default="ALL"
                    )
            elif len(history_document)==1:
                document_slected_to_delete = st.multiselect(
                    "",history_document,default=history_document[0]
                    )
            else:
                document_slected_to_delete = st.multiselect(
                    "",history_document
                    )
            if "ALL" in document_slected_to_delete:
                document_slected_to_delete = history_document
                document_slected_to_delete.remove("ALL")

            st.write("You selected:", document_slected_to_delete)
            if len(document_slected_to_delete) > 0:
                st.session_state.delete = st.button('Delete')
                if st.session_state.delete:
                    delete_document(st.session_state.token,st.session_state.service ,document_slected_to_delete)

css_style = """
<style>
.title {
    white-space: nowrap;
}
</style>
"""

st.markdown(css_style, unsafe_allow_html=True)

with st.container():
    st.markdown('<h1 class="title">Augmented Generative Document Scraper</h1>', unsafe_allow_html=True)
    if st.session_state.genre=="Add document(s)" and st.session_state.doc_ortext == "Text area":
                st.session_state.name_text_area = st.text_input("Enter name of the text area:")
                st.session_state.text_area = st.text_area("Enter text:")
                if st.session_state.text_area:
                    if st.button('Process Text'):
                        add_text_document(st.session_state.token, st.session_state.service)
    if st.session_state.genre=="Select document" and st.session_state.service_slected_to_chat:
        #print(st.session_state.document_selected_to_chat)
        #document_id = st.session_state.token+st.session_state.service_slected_to_chat+st.session_state.doument_slected_to_chat
        document_id = create_document_id(st.session_state.token, st.session_state.service_slected_to_chat, st.session_state.doument_slected_to_chat)
        print(document_id)
        schema = get_schema(document_id)
        schema = display_and_validate_schema(schema)
        if schema:
            save_schema(document_id, schema)
        
        if schema and st.checkbox("Add comments")  :
            comments = get_comments(document_id)
            if not comments:
                comments = {}
                keys = get_all_keys(schema)
            else:
                keys = list(comments.keys())
            comments = handle_comments(comments, keys)
            save_comments(document_id, comments)
        if schema and st.button('Process') :
            if st.session_state.doument_slected_to_chat.split("_")[-1]=="pdf": 
                data = {"token": st.session_state.token,
                "service_name": st.session_state.service_slected_to_chat,
                "document_name": st.session_state.doument_slected_to_chat,
                "method": st.session_state.method,
                "model": st.session_state.llm,
                "schema": schema,
                "comment": comments,
                "split_token": st.session_state.split_token if st.session_state.method == "personalize_chunking" else "",
                "start_page": st.session_state.start_page,
                "end_page": st.session_state.end_page}
                json_data = json.dumps(data)
                headers = {'Content-Type': 'application/json'}
                response  = requests.get(RESPONSE_API,data=json_data, headers=headers)
                print(response.text)
                response_data = json.loads(response.text)
            #elif st.session_state.doument_slected_to_chat.split("_")[-1]=="txt": 
            else:
                data = {"token": st.session_state.token,
                "service_name": st.session_state.service_slected_to_chat,
                "document_name": st.session_state.doument_slected_to_chat,
                "method": st.session_state.method,
                "model": st.session_state.llm,
                "schema": schema,
                "comment": comments,
                "split_token": st.session_state.split_token}
                json_data = json.dumps(data)
                headers = {'Content-Type': 'application/json'}
                response  = requests.get(RESPONSE_TXT_API,data=json_data, headers=headers)
                response_data = json.loads(response.text)
                if response_data.get('status')=='success':
                    json_str =response_data.get("json")
    
                    # Encode this JSON string to bytes, which is required for the download
                    json_bytes = json_str.encode('utf-8')
                    st.download_button(
                        label="Download JSON",
                        data=json_bytes,
                        file_name="results.json",
                        mime="application/json"
                    )
                else:
                    st.error("Error in processing document")