Spaces:
Running
Running
File size: 25,046 Bytes
e117945 8a5784f e117945 8a5784f e117945 8a5784f e117945 8a5784f e117945 8a5784f e117945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import json
import os
from execution import check_correctness
import copy
import argparse
from tqdm import tqdm
import subprocess
from concurrent.futures import ThreadPoolExecutor
import concurrent.futures
import os
import re
import shutil
import contextlib
from concurrent.futures import ThreadPoolExecutor
import concurrent.futures
from tqdm import tqdm
import contextlib
import io
import os
import signal
from tqdm import tqdm
class TimeoutException(Exception):
pass
class WriteOnlyStringIO(io.StringIO):
""" StringIO that throws an exception when it's read from """
def read(self, *args, **kwargs):
raise IOError
def readline(self, *args, **kwargs):
raise IOError
def readlines(self, *args, **kwargs):
raise IOError
def readable(self, *args, **kwargs):
""" Returns True if the IO object can be read. """
return False
class redirect_stdin(contextlib._RedirectStream): # type: ignore
_stream = 'stdin'
@contextlib.contextmanager
def swallow_io():
stream = WriteOnlyStringIO()
with contextlib.redirect_stdout(stream):
with contextlib.redirect_stderr(stream):
with redirect_stdin(stream):
yield
@contextlib.contextmanager
def time_limit(seconds: float):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.setitimer(signal.ITIMER_REAL, seconds)
signal.signal(signal.SIGALRM, signal_handler)
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL, 0)
ListNode_text = """
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
"""
TreeNode_text = """
class TreeNode:
def __init__(self, val=0, left=None, right=None, next=None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
import_pkg = """
from typing import *
from bisect import *
from collections import *
from copy import *
from datetime import *
from heapq import *
from math import *
from re import *
from string import *
from random import *
from itertools import *
from functools import *
from operator import *
import string
import re
import datetime
import collections
import heapq
import bisect
import copy
import math
import random
import itertools
import functools
import operator
"""
memory_profiler_prompt = r"""
def parse_profile_table(profile_table: str):
table = {"filename": None, "rows": []}
for line in profile_table.strip().split("\n"):
if line.startswith("Filename:"):
table["filename"] = line.split(": ")[1]
elif re.match(r"^\s*\d+", line):
parts = re.split(r"\s{2,}", line.strip(), maxsplit=4)
if len(parts) == 5 and "iB" in parts[1] and "iB" in parts[2]:
table["rows"].append({
"line": int(parts[0]),
"mem_usage": parts[1],
"increment": parts[2],
"occurrences": int(parts[3]),
"line_contents": parts[4],
})
else:
parts = re.split(r"\s{2,}", line.strip(), maxsplit=1)
table["rows"].append({
"line": int(parts[0]),
"line_contents": parts[1] if len(parts) == 2 else "",
})
return table
def print_averaged_results(profile_log: str, precision: int = 1):
tables = [parse_profile_table(table) for table in profile_log.split("\n\n\n")]
averaged_table = defaultdict(lambda: defaultdict(list))
for table in tables:
filename = table["filename"]
for row in table["rows"]:
line = row["line"]
if "mem_usage" in row:
mem_usage = float(row["mem_usage"].split()[0])
increment = float(row["increment"].split()[0])
occurrences = row["occurrences"]
averaged_table[filename][line].append((mem_usage, increment, occurrences))
else:
averaged_table[filename][line].append(tuple())
stream = sys.stdout
template = '{0:>6} {1:>12} {2:>12} {3:>10} {4:<}'
for filename, lines in averaged_table.items():
header = template.format('Line #', 'Mem usage', 'Increment', 'Occurrences', 'Line Contents')
stream.write(u'Filename: ' + filename + '\n\n')
stream.write(header + u'\n')
stream.write(u'=' * len(header) + '\n')
all_lines = linecache.getlines(filename)
float_format = u'{0}.{1}f'.format(precision + 4, precision)
template_mem = u'{0:' + float_format + '} MiB'
for lineno, mem_values in lines.items():
# TODO: should average the rest or not?
# mem_values = [(50.1, 0.0, 4), (51.1, 0.0, 6), ()]
if any([len(m) == 0 for m in mem_values]):
tmp = template.format(lineno, "", "", "", all_lines[lineno - 1])
else:
mem_usage_sum = sum(m[0] for m in mem_values)
increment_sum = sum(m[1] for m in mem_values)
occurrences_sum = sum(m[2] for m in mem_values)
count = len(mem_values)
avg_mem_usage = mem_usage_sum / count
avg_increment = increment_sum / count
avg_occurrences = occurrences_sum / count
avg_mem_usage_str = template_mem.format(avg_mem_usage)
avg_increment_str = template_mem.format(avg_increment)
tmp = template.format(lineno, avg_mem_usage_str, avg_increment_str, int(avg_occurrences), all_lines[lineno - 1])
stream.write(tmp)
print_averaged_results(profile_stream.getvalue(), precision=PROFILE_PRECISION)
"""
memory_profiler_pkgs = r"""
from collections import defaultdict, deque
from memory_profiler import profile
import io
profile_stream = io.StringIO()
PROFILE_PRECISION = 1
import re
import sys
import linecache
"""
def calculate_memory_usage(dat_file_path):
with open(dat_file_path, 'r') as file:
prev_time = 0
prev_mem_mb = 0
mem_time_mb_s = 0
next(file)
for line in file:
if not line.startswith('MEM'):
continue # Skip any line that does not start with 'MEM'
parts = line.split()
mem_in_mb = float(parts[1])
timestamp = float(parts[2])
if prev_time > 0:
time_interval_s = timestamp - prev_time
mem_time_mb_s += (prev_mem_mb + mem_in_mb) / 2 * time_interval_s
prev_time = timestamp
prev_mem_mb = mem_in_mb
return mem_time_mb_s
def calculate_runtime(dat_file_path):
with open(dat_file_path, 'r') as file:
start_time = float("inf")
end_time = float("-inf")
next(file)
for line in file:
if not line.startswith('MEM'):
continue # Skip any line that does not start with 'MEM'
parts = line.split()
timestamp = float(parts[2])
start_time = min(start_time, timestamp)
end_time = max(end_time, timestamp)
return max(end_time - start_time,0)
def report_max_memory_usage(dat_file_path):
max_memory_usage = 0
with open(dat_file_path, 'r') as file:
prev_time = 0
prev_mem_mb = 0
mem_time_mb_s = 0
next(file)
for line in file:
if not line.startswith('MEM'):
continue # Skip any line that does not start with 'MEM'
parts = line.split()
mem_in_mb = float(parts[1])
max_memory_usage = max(max_memory_usage, mem_in_mb)
return max_memory_usage
def add_profile_decorator_to_python_file(file_path,entry_point):
"""给Python文件中的函数自动添加@profile装饰器。"""
try:
with open(file_path, 'r') as file:
lines = file.readlines()
if "humaneval" in file_path:
with open(file_path, 'w') as file:
inside_class = False
class_indent = 0
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
file.write('@profile\n')
file.write(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def "):
file.write(' ' * class_indent + '@profile\n')
file.write(line)
if "mbpp" in file_path:
entry_point
with open(file_path, 'w') as file:
inside_class = False
class_indent = 0
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
file.write('@profile\n')
file.write(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def "):
file.write(' ' * class_indent + '@profile\n')
file.write(line)
else:
with open(file_path, 'w') as file:
inside_class = False
class_indent = 0
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith("class Solution"):
inside_class = True
class_indent = len(line) - len(stripped_line)
file.write(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def "):
file.write(' ' * class_indent + ' @profile\n')
file.write(line)
except Exception as e:
# print(f"Error during the file processing: {e}")
pass
def add_profile_for_memory_profiler(code_string,data):
"""给Python代码中的函数自动添加@profile装饰器。"""
entry_point = ""
try:
if "task_id" in data.keys() and "HumanEval" in data["task_id"]:
entry_point = data["entry_point"]
lines = code_string.split('\n')
new_lines = []
inside_class = False
class_indent = 0
first_function = True
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
new_lines.append(' ' * class_indent + '@profile(stream=profile_stream, precision=PROFILE_PRECISION)')
new_lines.append(line)
return '\n'.join(new_lines)
elif "task_id" in data.keys():
entry_point = data["entry_point"]
lines = code_string.split('\n')
new_lines = []
inside_class = False
class_indent = 0
first_function = True
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
new_lines.append(' ' * class_indent + '@profile(stream=profile_stream, precision=PROFILE_PRECISION)')
new_lines.append(line)
return '\n'.join(new_lines)
else:
lines = code_string.split('\n')
new_lines = []
inside_class = False
class_indent = 0
first_function = True
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith("class Solution"):
inside_class = True
class_indent = len(line) - len(stripped_line)
new_lines.append(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def ") and first_function:
new_lines.append(' ' * class_indent + ' @profile(stream=profile_stream, precision=PROFILE_PRECISION)')
first_function = False
new_lines.append(line)
return '\n'.join(new_lines)
except Exception as e:
return code_string
def calculate_line_efficiency(completion_file,entry_point):
try:
path, filename = os.path.split(completion_file)
tmp_py_script_filename = f"{filename.split('.')[0]}_tmp.py"
tmp_py_script = os.path.join(path, tmp_py_script_filename)
tmp_lprof_filename = f"{tmp_py_script_filename}.lprof" # 期望的lprof文件名
# 复制原始脚本到临时文件,并添加@profile装饰器
subprocess.run(['cp', completion_file, tmp_py_script],check=True, capture_output=True, text=True)
add_profile_decorator_to_python_file(tmp_py_script,entry_point)
subprocess.run(['timeout',"10",'kernprof', '-l', tmp_py_script_filename], cwd=path, capture_output=True, text=True, check=True)
# 生成性能报告
overhead_dir = path
# os.makedirs(overhead_dir, exist_ok=True)
report_file = os.path.join(overhead_dir, tmp_py_script_filename.replace('.py', '.txt'))
with open(report_file, 'w') as f:
subprocess.run(['timeout',"10",'python', '-m', 'line_profiler', tmp_lprof_filename], cwd=path, stdout=f)
with open(report_file, 'r') as f:
report_content = f.read()
# print(report_content)
except subprocess.CalledProcessError as e:
# print(f"Error during the execution: {e}")
report_content = f"Error during the execution: {e}"
# # 清理临时文件
if os.path.exists(tmp_py_script):
os.remove(tmp_py_script)
if os.path.exists(f"{tmp_py_script}.lprof"):
os.remove(f"{tmp_py_script}.lprof")
return report_content
def humaneval_add_string_to_py_file(data,evaluation_code=False, path="./tmp/"):
if "canonical_solution" in path:
data["completion"] = data["canonical_solution"]
if evaluation_code==False:
test_case = data["test"]
else:
test_case = data["small_test_cases"]
# test_case = data["small_test_cases"]
problem_idx = data["task_id"].split("/")[1]
return_path,full_code = None,""
tmp_code = data["completion"].split("\n")
code = []
for string in tmp_code:
if "print(" in string:
continue
else:
code.append(string)
data["completion"] = "\n".join(code)
try:
if f"```python" in data["completion"]:
start_idx = data["completion"].find(f"```python")
data["completion"] = data["completion"][start_idx+len(f"```python"):]
if "```" in data["completion"]:
end_idx = data["completion"].find("```")
data["completion"] = data["completion"][:end_idx]
full_code = import_pkg+ "\n"+data["prompt"] + "\n"+data["completion"] + "\n" + test_case
# with open(f"./{path}/{problem_idx}.py", "w") as f:
# f.write(full_code)
# return_path = f"./{path}/{problem_idx}.py"
result = check_correctness(full_code,timeout=10.0)
if result["passed"]:
with open(f"./{path}/{problem_idx}.py", "w") as f:
f.write(full_code)
return_path = f"./{path}/{problem_idx}.py"
# print(return_path)
else:
return_path = None
except Exception as e:
pass
# print(return_path,full_code)
return return_path,full_code
def mbpp_add_string_to_py_file(data,evaluation_code=False, path="./tmp/"):
if "canonical_solution" in path:
data["completion"] = data["code"]
if evaluation_code==False:
test_case = data["test"]
else:
test_case = "\n".join(data["test_list"])
# test_case = data["small_test_cases"]
problem_idx = str(data["task_id"])
return_path,full_code = None,""
tmp_code = data["completion"].split("\n")
code = []
for string in tmp_code:
if "print(" in string:
continue
else:
code.append(string)
data["completion"] = "\n".join(code)
try:
if f"```python" in data["completion"]:
start_idx = data["completion"].find(f"```python")
data["completion"] = data["completion"][start_idx+len(f"```python"):]
if "```" in data["completion"]:
end_idx = data["completion"].find("```")
data["completion"] = data["completion"][:end_idx]
full_code = "\n".join(data["test_imports"])+ "\n"+data["completion"] + "\n" + test_case
# with open(f"./{path}/{problem_idx}.py", "w") as f:
# f.write(full_code)
# return_path = f"./{path}/{problem_idx}.py"
result = check_correctness(full_code,timeout=10.0)
if result["passed"]:
with open(f"./{path}/{problem_idx}.py", "w") as f:
f.write(full_code)
return_path = f"./{path}/{problem_idx}.py"
except Exception as e:
# print(e)
pass
# print(return_path,full_code)
return return_path,full_code
def add_string_to_py_file(data,evaluation_code=False, path="./tmp/"):
if "canonical_solution" in path:
data["completion"] = data["canonical_solution"]
if evaluation_code==False:
test_case = data["test_case"]
else:
test_case = data["small_test_cases"]
# test_case = data["small_test_cases"]
problem_idx = data["problem_idx"]
return_path,full_code = None,""
tmp_code = data["completion"].split("\n")
code = []
for string in tmp_code:
if "print(" in string:
continue
else:
code.append(string)
data["completion"] = "\n".join(code)
try:
if "class Solution" in data["completion"]:
if "```python" in data["completion"]:
start_idx = data["completion"].find("```python")
data["completion"] = data["completion"][start_idx+9:]
if "```" in data["completion"]:
end_idx = data["completion"].find("```")
data["completion"] = data["completion"][:end_idx]
test_case = test_case.split("\n")[:100]
test_case = "\n".join(test_case)
# import_pkg
full_code = import_pkg + "\n"+TreeNode_text + "\n"+ListNode_text + "\n" + data["completion"] + "\nsolution=Solution()\n" + test_case
# with open(f"./{path}/{problem_idx}.py", "w") as f:
# f.write(full_code)
# return_path = f"./{path}/{problem_idx}.py"
result = check_correctness(full_code,timeout=10.0)
if result["passed"]:
with open(f"./{path}/{problem_idx}.py", "w") as f:
f.write(full_code)
return_path = f"./{path}/{problem_idx}.py"
# print(return_path)
else:
return_path = None
except Exception as e:
# print(e)
pass
return return_path,full_code
def calculate_code_execution_efficiency(data,evaluation_code=False,path="./tmp/",max_execution_time=10):
entry_point = ""
try:
if "task_id" in data.keys() and "HumanEval" in str(data["task_id"]):
problem_idx = data["task_id"].split("/")[1]
completion_file,full_code = humaneval_add_string_to_py_file(data,evaluation_code=evaluation_code, path=path)
entry_point = data["entry_point"]
# print(data.keys())
# print(data["dataset"])
elif "dataset" in data.keys() and data["dataset"]=="mbpp":
problem_idx = data["task_id"]
completion_file,full_code = mbpp_add_string_to_py_file(data,evaluation_code=evaluation_code, path=path)
code_example = data["code"]
match = re.search(r"def\s+(\w+)\s*\(", code_example)
if match:
entry_point = match.group(1)
else:
test_example = data["test_list"][0]
match = re.search(r"assert\s+(\w+)\s*\(", test_example)
if match:
entry_point = match.group(1)
else: completion_file== None
else:
problem_idx = data["problem_idx"]
completion_file,full_code = add_string_to_py_file(data,evaluation_code=evaluation_code, path=path)
except Exception as e:
# print(e)
completion_file = None
if completion_file == None:
# print("test")
overhead = f"""
The code execution failed.
"""
canonical_solution_memory_usage = 0
canonical_solution_execution_time = 0
canonical_solution_max_memory_usage = 0
executable = False
return overhead, canonical_solution_memory_usage, canonical_solution_execution_time, canonical_solution_max_memory_usage, executable
script_path = './run_code.sh'
completion_dat_file = f'./{path}/{problem_idx}.dat'
try:
subprocess.run([script_path, completion_file, completion_dat_file,str(max_execution_time)],
check=True, capture_output=True, text=True)
canonical_solution_memory_usage = calculate_memory_usage(completion_dat_file)
canonical_solution_execution_time = calculate_runtime(completion_dat_file)
canonical_solution_max_memory_usage = report_max_memory_usage(completion_dat_file)
executable = True
overhead = f"""
The total memory usage during the code execution is: {canonical_solution_memory_usage} MB*s.
The total execution time is: {canonical_solution_execution_time} s.
The maximum memory peak requirement is: {canonical_solution_max_memory_usage} MB.
"""
except Exception as e:
# print(e)
overhead = f"""
The code execution failed.
"""
canonical_solution_memory_usage = 0
canonical_solution_execution_time = 0
canonical_solution_max_memory_usage = 0
executable = False
return overhead, canonical_solution_memory_usage, canonical_solution_execution_time, canonical_solution_max_memory_usage, executable
def fetch_completion(dataset,model):
with ThreadPoolExecutor() as executor:
future_to_entry = {executor.submit(calculate_code_execution_efficiency, copy.deepcopy(entry),False, path=model,max_execution_time=10): entry for entry in tqdm(dataset)}
for future in tqdm(concurrent.futures.as_completed(future_to_entry)):
entry = future_to_entry[future]
try:
updated_entry = future.result()
idx = dataset.index(entry)
dataset[idx] = updated_entry
except Exception as e:
print(e)
return dataset
def run_model_task(task, model, file):
if "/" in model:
model = model.split("/")[1]
dat_path = f"./results/{task}_{model}"
canonical_solution_path = f"./results/{task}_canonical_solution"
with open(file, "r") as f:
dataset = json.load(f)
if os.path.exists(dat_path):
shutil.rmtree(dat_path)
if os.path.exists(canonical_solution_path):
shutil.rmtree(canonical_solution_path)
if os.path.exists(dat_path) == False:
os.makedirs(dat_path)
if os.path.exists(canonical_solution_path) == False:
os.makedirs(canonical_solution_path)
fetch_completion(dataset,dat_path)
with open(file, "r") as f:
dataset = json.load(f)
for i in range(len(dataset)):
dataset[i]["dataset"] = f"{task}"
fetch_completion(dataset,canonical_solution_path)
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument("--task", type=str, default="EffiBench")
parse.add_argument("--model", type=str, default="gpt-4")
parse.add_argument("--file", type=str, default="")
args = parse.parse_args()
if not args.file:
args.file = f"./{args.task}_{args.model}.json"
run_model_task(args.task, args.model, args.file)
|