Spaces:
Sleeping
Sleeping
File size: 25,445 Bytes
2eb5587 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier, GradientBoostingRegressor
from sklearn.metrics import classification_report, mean_squared_error, precision_recall_curve, roc_curve, auc
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.feature_selection import SelectFromModel
import joblib
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import seaborn as sns
import matplotlib.pyplot as plt
import os
# Set page config
st.set_page_config(
page_title="Predictive Maintenance Dashboard",
page_icon="π§",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main {
padding: 0rem 1rem;
}
.stAlert {
padding: 1rem;
margin: 1rem 0;
}
.metric-card {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
def load_and_prepare_data():
"""
ETL Pipeline for data preparation
Returns cleaned and feature-engineered dataset
"""
# Load dataset
data = pd.read_csv('playground-series-s3e17/train.csv')
# Data Cleaning
data = data.ffill().bfill()
# Feature Engineering
data['Failure'] = data[['TWF', 'HDF', 'PWF', 'OSF', 'RNF']].sum(axis=1) > 0
# Advanced Feature Engineering
data['Torque_RollingMean'] = data['Torque [Nm]'].rolling(window=10, min_periods=1).mean()
data['RPM_Variance'] = data['Rotational speed [rpm]'].rolling(window=10, min_periods=1).var()
data['Temperature_Difference'] = data['Process temperature [K]'] - data['Air temperature [K]']
data['Power'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] / 9550 # Mechanical Power in kW
data['Temperature_Rate'] = data['Process temperature [K]'].diff().fillna(0)
data['Wear_Rate'] = data['Tool wear [min]'].diff().fillna(0)
data['Power_to_Wear_Ratio'] = data['Power'] / (data['Tool wear [min]'] + 1)
# Simulate maintenance history
data['Last_Maintenance'] = np.random.randint(0, 1000, size=len(data))
data['Maintenance_Count'] = np.random.randint(0, 5, size=len(data))
return data
@st.cache_data
def get_failure_patterns(data):
"""Analyze common patterns leading to failures"""
failure_data = data[data['Failure'] == 1]
patterns = {
'high_temp': failure_data[failure_data['Temperature_Difference'] > failure_data['Temperature_Difference'].mean()].shape[0],
'high_wear': failure_data[failure_data['Tool wear [min]'] > failure_data['Tool wear [min]'].mean()].shape[0],
'high_power': failure_data[failure_data['Power'] > failure_data['Power'].mean()].shape[0]
}
return patterns
def create_pipelines(model_params=None):
"""Create ML pipelines with configurable parameters"""
if model_params is None:
model_params = {
'n_estimators_clf': 200,
'max_depth_clf': 15,
'n_estimators_reg': 150,
'max_depth_reg': 7
}
# Use StratifiedKFold for classification
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)
clf_pipeline = Pipeline([
('imputer', SimpleImputer(strategy='mean')),
('scaler', StandardScaler()),
('feature_selection', SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42))),
('classifier', RandomForestClassifier(
n_estimators=model_params['n_estimators_clf'],
max_depth=model_params['max_depth_clf'],
class_weight='balanced',
random_state=42
))
])
reg_pipeline = Pipeline([
('imputer', SimpleImputer(strategy='mean')),
('scaler', StandardScaler()),
('feature_selection', SelectFromModel(GradientBoostingRegressor(n_estimators=100, random_state=42))),
('regressor', GradientBoostingRegressor(
n_estimators=model_params['n_estimators_reg'],
max_depth=model_params['max_depth_reg'],
learning_rate=0.1,
random_state=42
))
])
return clf_pipeline, reg_pipeline
def calculate_maintenance_metrics(failure_prob, tool_wear, last_maintenance, thresholds):
"""
Calculate maintenance recommendations based on predictions and customizable thresholds
"""
risk_threshold = thresholds['risk']
wear_threshold = thresholds['wear']
maintenance_age_threshold = thresholds['maintenance_age']
maintenance_due = (
(failure_prob > risk_threshold) |
(tool_wear > wear_threshold) |
(last_maintenance > maintenance_age_threshold)
)
priority = np.where(
failure_prob > 0.7, 'High',
np.where(failure_prob > 0.4, 'Medium', 'Low')
)
estimated_days = np.where(
maintenance_due,
0,
np.ceil((wear_threshold - tool_wear) / np.maximum(0.1, tool_wear.mean()))
)
next_maintenance = np.where(
maintenance_due,
'Immediate',
np.where(
estimated_days <= 7,
'Within 1 week',
np.where(
estimated_days <= 30,
'Within 1 month',
'No immediate action needed'
)
)
)
return maintenance_due, priority, next_maintenance, estimated_days
def create_failure_analysis_plots(data, X_train, y_train, X_test, y_test, predictions):
"""Create various failure analysis visualizations"""
# Train the model (assuming a RandomForestClassifier for this example)
model = RandomForestClassifier(n_estimators=100, max_depth=10)
model.fit(X_train, y_train) # Train the model with training data
# Time series of key metrics
fig1 = go.Figure()
fig1.add_trace(go.Scatter(
y=data['Tool wear [min]'],
name='Tool Wear',
line=dict(color='blue')
))
fig1.add_trace(go.Scatter(
y=data['Temperature_Difference'],
name='Temperature Difference',
line=dict(color='red')
))
fig1.add_trace(go.Scatter(
y=data['Power'],
name='Power',
line=dict(color='green')
))
fig1.update_layout(title='Key Metrics Over Time', xaxis_title='Observation')
# Failure probability distribution
fig2 = px.histogram(
predictions,
nbins=50,
title='Distribution of Failure Probabilities'
)
# Get predicted probabilities for the positive class
y_pred_proba = model.predict_proba(X_test)[:, 1] # Probabilities for the positive class (binary classification)
y_test_cls = y_test # True class labels
# ROC Curve
fpr, tpr, _ = roc_curve(y_test_cls, y_pred_proba)
roc_auc = auc(fpr, tpr)
fig3 = go.Figure()
fig3.add_trace(go.Scatter(
x=fpr, y=tpr,
mode='lines',
name=f'ROC Curve (AUC = {roc_auc:.2f})'
))
fig3.plot_bgcolor = 'white'
fig3.update_layout(
title='Receiver Operating Characteristic (ROC) Curve',
xaxis_title='False Positive Rate',
yaxis_title='True Positive Rate',
xaxis_range=[0, 1],
yaxis_range=[0, 1]
)
return fig1, fig2, fig3
def plot_maintenance_calendar(schedule_df):
"""Create an interactive maintenance calendar view"""
fig = px.timeline(
schedule_df,
x_start='Scheduled_Date',
x_end='Due_Date',
y='Equipment_ID',
color='Priority',
title='Maintenance Schedule Timeline'
)
fig.update_yaxes(autorange="reversed", title="Equipment ID")
fig.update_xaxes(title="Date")
return fig
def sidebar_controls():
"""Create sidebar controls for user input"""
st.sidebar.header('Dashboard Controls')
# Model Parameters
st.sidebar.subheader('Model Parameters')
n_estimators_clf = st.sidebar.slider('Number of Trees (Classification)', 50, 300, 200)
max_depth_clf = st.sidebar.slider('Max Tree Depth (Classification)', 5, 30, 15)
n_estimators_reg = st.sidebar.slider('Number of Trees (Regression)', 50, 300, 150)
max_depth_reg = st.sidebar.slider('Max Tree Depth (Regression)', 5, 30, 7)
# Threshold Settings
st.sidebar.subheader('Maintenance Thresholds')
risk_threshold = st.sidebar.slider('Risk Threshold', 0.0, 1.0, 0.3)
wear_threshold = st.sidebar.slider('Wear Threshold', 100, 300, 200)
maintenance_age = st.sidebar.slider('Maintenance Age Threshold', 500, 1000, 800)
# Visualization Settings
st.sidebar.subheader('Visualization Settings')
plot_height = st.sidebar.slider('Plot Height', 400, 800, 600)
color_theme = st.sidebar.selectbox('Color Theme', ['blues', 'reds', 'greens'])
return {
'model_params': {
'n_estimators_clf': n_estimators_clf,
'max_depth_clf': max_depth_clf,
'n_estimators_reg': n_estimators_reg,
'max_depth_reg': max_depth_reg
},
'thresholds': {
'risk': risk_threshold,
'wear': wear_threshold,
'maintenance_age': maintenance_age
},
'viz_params': {
'plot_height': plot_height,
'color_theme': color_theme
}
}
def main():
st.title("π§ Advanced Predictive Maintenance Dashboard")
# Get user input parameters
params = sidebar_controls()
# Introduction
with st.expander("βΉοΈ Dashboard Overview", expanded=True):
st.markdown("""
This dashboard provides comprehensive predictive maintenance analytics for manufacturing equipment:
1. *Real-time Monitoring*: Track equipment health metrics and failure predictions
2. *Maintenance Planning*: Get AI-powered maintenance recommendations
3. *Performance Analysis*: Analyze historical data and model performance
4. *Interactive Features*: Customize thresholds and visualization parameters
Use the sidebar controls to adjust model parameters and thresholds.
""")
# Load and prepare data
with st.spinner("Loading and preparing data..."):
data = load_and_prepare_data()
# Define features
feature_columns = [
'Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]',
'Torque [Nm]', 'Tool wear [min]', 'Torque_RollingMean', 'RPM_Variance',
'Temperature_Difference', 'Power', 'Temperature_Rate', 'Wear_Rate',
'Power_to_Wear_Ratio'
]
X = data[feature_columns]
y_classification = data['Failure']
y_regression = data['Tool wear [min]']
# Load or train models with user parameters
model_dir = './models'
os.makedirs(model_dir, exist_ok=True)
clf_pipeline_file = os.path.join(model_dir, 'clf_pipeline.pkl')
reg_pipeline_file = os.path.join(model_dir, 'reg_pipeline.pkl')
if os.path.exists(clf_pipeline_file) and os.path.exists(reg_pipeline_file):
# Load pre-trained models
clf_pipeline = joblib.load(clf_pipeline_file)
reg_pipeline = joblib.load(reg_pipeline_file)
# Data split for prediction
X_train, X_test, y_train_cls, y_test_cls = train_test_split(
X, y_classification, test_size=0.2, random_state=42, stratify=y_classification
)
_, _, y_train_reg, y_test_reg = train_test_split(
X, y_regression, test_size=0.2, random_state=42
)
else:
# Train models with user parameters
with st.spinner("Training models with selected parameters..."):
clf_pipeline, reg_pipeline = create_pipelines(params['model_params'])
# Split data for training
X_train, X_test, y_train_cls, y_test_cls = train_test_split(
X, y_classification, test_size=0.2, random_state=42, stratify=y_classification
)
_, _, y_train_reg, y_test_reg = train_test_split(
X, y_regression, test_size=0.2, random_state=42
)
# Train models
clf_pipeline.fit(X_train, y_train_cls)
reg_pipeline.fit(X_train, y_train_reg)
# Save models
joblib.dump(clf_pipeline, clf_pipeline_file)
joblib.dump(reg_pipeline, reg_pipeline_file)
st.write("Trained and saved new models to ./models folder.")
# Make predictions
y_pred_cls = clf_pipeline.predict(X_test)
y_pred_proba = clf_pipeline.predict_proba(X_test)[:, 1]
y_pred_reg = reg_pipeline.predict(X_test)
# Calculate maintenance recommendations
maintenance_due, priority, next_maintenance, estimated_days = calculate_maintenance_metrics(
y_pred_proba,
y_pred_reg,
data['Last_Maintenance'].iloc[-len(y_pred_cls):],
params['thresholds']
)
# Dashboard Layout
# 1. Equipment Health Overview
st.header("π Equipment Health Overview")
metric_cols = st.columns(4)
with metric_cols[0]:
st.metric(
"Overall Health Index",
f"{(1 - y_pred_proba.mean()):.1%}",
delta=f"{-y_pred_proba.mean():.1%}",
delta_color="inverse"
)
with metric_cols[1]:
st.metric(
"Average Failure Risk",
f"{y_pred_proba.mean():.1%}",
delta=f"{(y_pred_proba.mean() - 0.3):.1%}" if y_pred_proba.mean() > 0.3 else "Normal",
delta_color="inverse"
)
with metric_cols[2]:
st.metric(
"Equipment Requiring Maintenance",
f"{maintenance_due.sum()}",
delta=f"{maintenance_due.sum() - 10}" if maintenance_due.sum() > 10 else "Within limits"
)
with metric_cols[3]:
st.metric(
"Average Tool Wear",
f"{y_pred_reg.mean():.1f} min",
delta=f"{y_pred_reg.mean() - params['thresholds']['wear']:.1f}"
)
# 2. Interactive Analysis Tabs
tabs = st.tabs([
"π Real-time Monitoring",
"π Performance Analysis",
"π§ Maintenance Planning",
"π Historical Analysis"
])
# Tab 1: Real-time Monitoring
with tabs[0]:
# Equipment Status Summary
status_df = pd.DataFrame({
'Status': ['Healthy', 'Warning', 'Critical'],
'Count': [
(y_pred_proba < 0.3).sum(),
((y_pred_proba >= 0.3) & (y_pred_proba < 0.7)).sum(),
(y_pred_proba >= 0.7).sum()
]
})
fig = px.pie(
status_df,
values='Count',
names='Status',
title='Equipment Status Distribution',
color='Status',
color_discrete_map={
'Healthy': 'green',
'Warning': 'yellow',
'Critical': 'red'
}
)
st.plotly_chart(fig, use_container_width=True)
# Real-time Alerts
if maintenance_due.sum() > 0:
st.warning(f"β οΈ {maintenance_due.sum()} equipment units require immediate attention!")
# Interactive Equipment Explorer
st.subheader("Equipment Explorer")
selected_metric = st.selectbox(
"Select Metric to Monitor:",
options=['Temperature_Difference', 'Tool wear [min]', 'Power', 'Torque [Nm]', 'Rotational speed [rpm]']
)
time_window = st.slider(
"Time Window (last N observations)",
min_value=10,
max_value=len(data),
value=100
)
# Plot selected metric
fig = px.line(
data.tail(time_window),
y=selected_metric,
title=f'{selected_metric} - Last {time_window} Observations'
)
fig.add_hline(
y=data[selected_metric].mean(),
line_dash="dash",
annotation_text="Average"
)
st.plotly_chart(fig, use_container_width=True)
# Tab 2: Performance Analysis
with tabs[1]:
st.subheader("Model Performance Analysis")
col1, col2 = st.columns(2)
with col1:
# Classification Performance
st.markdown("### Failure Prediction Performance")
st.text("Classification Report:")
st.code(classification_report(y_test_cls, y_pred_cls))
# Precision-Recall curve
precision, recall, _ = precision_recall_curve(y_test_cls, y_pred_proba)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=recall, y=precision,
mode='lines',
name='Precision-Recall curve',
fill='tozeroy'
))
fig.update_layout(
title='Precision-Recall Curve',
xaxis_title='Recall',
yaxis_title='Precision'
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Regression Performance
st.markdown("### Tool Wear Prediction Performance")
mse = mean_squared_error(y_test_reg, y_pred_reg)
rmse = np.sqrt(mse)
st.metric("Root Mean Squared Error", f"{rmse:.2f}")
# Feature Importance
feature_names = feature_columns
feature_importances = clf_pipeline.named_steps['classifier'].feature_importances_
# Ensure feature_names and feature_importances are of the same length
len_features = len(feature_names)
len_importances = len(feature_importances)
if len_features > len_importances:
feature_names = feature_names[:len_importances]
elif len_importances > len_features:
feature_importances = feature_importances[:len_features]
feature_imp = pd.DataFrame({
'Feature': feature_names,
'Importance': feature_importances
}).sort_values('Importance', ascending=True)
fig = px.bar(
feature_imp,
x='Importance',
y='Feature',
orientation='h',
title='Feature Importance Analysis'
)
st.plotly_chart(fig, use_container_width=True)
# Correlation Analysis
st.subheader("Feature Correlation Analysis")
# Calculate the correlation matrix
correlation_matrix = data[feature_columns].corr()
# Create a heatmap using plotly
correlation_fig = px.imshow(correlation_matrix,
text_auto=True,
color_continuous_scale='Viridis',
title="Feature Correlation Heatmap")
# Customize layout for better display
correlation_fig.update_layout(
width=800,
height=600,
xaxis_title="Features",
yaxis_title="Features",
xaxis={'tickangle': 45},
yaxis={'tickangle': -45}
)
# Display the correlation heatmap
st.plotly_chart(correlation_fig, use_container_width=True)
# Tab 3: Maintenance Planning
with tabs[2]:
st.subheader("Maintenance Schedule and Recommendations")
# Create maintenance schedule DataFrame
schedule_df = pd.DataFrame({
'Equipment_ID': range(1, len(maintenance_due) + 1),
'Failure_Probability': y_pred_proba,
'Tool_Wear': y_pred_reg,
'Priority': priority,
'Next_Maintenance': next_maintenance,
'Estimated_Days': estimated_days
})
# Add simulated dates
today = datetime.now()
schedule_df['Scheduled_Date'] = [
today + timedelta(days=int(d)) for d in schedule_df['Estimated_Days']
]
schedule_df['Due_Date'] = [
d + timedelta(days=7) for d in schedule_df['Scheduled_Date']
]
# Maintenance Calendar
st.markdown("### π
Maintenance Calendar")
calendar_fig = plot_maintenance_calendar(schedule_df)
st.plotly_chart(calendar_fig, use_container_width=True)
# Priority-based maintenance table
st.markdown("### π§ Priority Maintenance Tasks")
priority_df = schedule_df[schedule_df['Priority'] == 'High'].sort_values(
'Failure_Probability', ascending=False
)
if not priority_df.empty:
st.dataframe(
priority_df[['Equipment_ID', 'Failure_Probability', 'Tool_Wear', 'Next_Maintenance']],
use_container_width=True
)
else:
st.success("No high-priority maintenance tasks at the moment!")
# Maintenance Cost Analysis
st.markdown("### π° Maintenance Cost Projection")
est_cost_per_maintenance = st.number_input(
"Estimated cost per maintenance (USD):",
value=1000,
step=100
)
total_maintenance = maintenance_due.sum()
projected_cost = total_maintenance * est_cost_per_maintenance
cost_col1, cost_col2 = st.columns(2)
with cost_col1:
st.metric(
"Projected Maintenance Cost",
f"${projected_cost:,.2f}",
delta=f"${projected_cost - 10000:,.2f}" if projected_cost > 10000 else "Within budget"
)
with cost_col2:
st.metric(
"Average Cost per Equipment",
f"${projected_cost/len(maintenance_due):,.2f}"
)
# Tab 4: Historical Analysis
with tabs[3]:
st.subheader("Historical Performance Analysis")
# Time series analysis
st.markdown("### π Historical Trends")
metric_for_history = st.selectbox(
"Select metric for historical analysis:",
options=['Tool wear [min]', 'Temperature_Difference', 'Power', 'Failure']
)
fig = go.Figure()
fig.add_trace(go.Scatter(
y=data[metric_for_history],
mode='lines',
name=metric_for_history
))
# Add trend line
z = np.polyfit(range(len(data)), data[metric_for_history], 1)
p = np.poly1d(z)
fig.add_trace(go.Scatter(
y=p(range(len(data))),
mode='lines',
name='Trend',
line=dict(dash='dash')
))
st.plotly_chart(fig, use_container_width=True)
# Failure patterns analysis
st.markdown("### π Failure Patterns")
patterns = get_failure_patterns(data)
pattern_cols = st.columns(3)
for i, (pattern, count) in enumerate(patterns.items()):
with pattern_cols[i]:
st.metric(
f"Failures due to {pattern.replace('_', ' ').title()}",
count,
delta=f"{count/len(data['Failure'])*100:.1f}% of total"
)
# Footer with additional information
st.markdown("---")
st.markdown("""
### π Notes and Recommendations
- Adjust thresholds in the sidebar to customize maintenance triggers
- Regular model retraining is recommended for optimal performance
- Contact maintenance team for immediate issues
""")
# Download section for reports
if st.button("Generate Maintenance Report"):
# Create report DataFrame
report_df = pd.DataFrame({
'Equipment_ID': range(1, len(maintenance_due) + 1),
'Failure_Risk': y_pred_proba,
'Tool_Wear': y_pred_reg,
'Maintenance_Priority': priority,
'Next_Maintenance': next_maintenance,
'Days_Until_Maintenance': estimated_days
})
# Convert to CSV
csv = report_df.to_csv(index=False)
st.download_button(
label="Download Maintenance Report",
data=csv,
file_name="maintenance_report.csv",
mime="text/csv"
)
if __name__ == "__main__":
main()
|