File size: 12,859 Bytes
b163aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797f6a7
 
 
 
 
 
 
 
 
 
 
 
b163aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f6021
 
 
b163aa7
 
d2f6021
b163aa7
d2f6021
b163aa7
 
 
 
 
 
 
 
9fb8195
b163aa7
 
 
 
 
9fb8195
b163aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f6021
b163aa7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Optimized SpeechT5 Armenian TTS Application
==========================================

High-performance Gradio application with advanced optimization features.
"""

import gradio as gr
import numpy as np
import logging
import time
from typing import Tuple, Optional
import os
import sys

# Add src to path for imports
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.join(current_dir, 'src')
if src_path not in sys.path:
    sys.path.insert(0, src_path)

try:
    from src.pipeline import TTSPipeline
except ImportError as e:
    logging.error(f"Failed to import pipeline: {e}")
    # Fallback import attempt
    sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
    from src.pipeline import TTSPipeline

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Global pipeline instance
tts_pipeline: Optional[TTSPipeline] = None


def initialize_pipeline():
    """Initialize the TTS pipeline with error handling."""
    global tts_pipeline
    
    try:
        logger.info("Initializing TTS Pipeline...")
        tts_pipeline = TTSPipeline(
            model_checkpoint="Edmon02/TTS_NB_2",
            max_chunk_length=200,  # Optimal for 5-20s clips
            crossfade_duration=0.1,
            use_mixed_precision=True
        )
        
        # Apply production optimizations
        tts_pipeline.optimize_for_production()
        
        logger.info("TTS Pipeline initialized successfully")
        return True
        
    except Exception as e:
        logger.error(f"Failed to initialize TTS pipeline: {e}")
        return False


def predict(text: str, speaker: str, 
           enable_chunking: bool = True,
           apply_processing: bool = True) -> Tuple[int, np.ndarray]:
    """
    Main prediction function with optimization and error handling.
    
    Args:
        text: Input text to synthesize
        speaker: Speaker selection
        enable_chunking: Whether to enable intelligent chunking
        apply_processing: Whether to apply audio post-processing
        
    Returns:
        Tuple of (sample_rate, audio_array)
    """
    global tts_pipeline
    
    start_time = time.time()
    
    try:
        # Validate inputs
        if not text or not text.strip():
            logger.warning("Empty text provided")
            return 16000, np.zeros(0, dtype=np.int16)
        
        if tts_pipeline is None:
            logger.error("TTS pipeline not initialized")
            return 16000, np.zeros(0, dtype=np.int16)
        
        # Extract speaker code from selection
        speaker_code = speaker.split("(")[0].strip()
        
        # Log request
        logger.info(f"Processing request: {len(text)} chars, speaker: {speaker_code}")
        
        # Synthesize speech
        sample_rate, audio = tts_pipeline.synthesize(
            text=text,
            speaker=speaker_code,
            enable_chunking=enable_chunking,
            apply_audio_processing=apply_processing
        )
        
        # Log performance
        total_time = time.time() - start_time
        audio_duration = len(audio) / sample_rate if len(audio) > 0 else 0
        rtf = total_time / audio_duration if audio_duration > 0 else float('inf')
        
        logger.info(f"Request completed in {total_time:.3f}s (RTF: {rtf:.2f})")
        
        return sample_rate, audio
        
    except Exception as e:
        logger.error(f"Prediction failed: {e}")
        return 16000, np.zeros(0, dtype=np.int16)


def get_performance_info() -> str:
    """Get performance statistics as formatted string."""
    global tts_pipeline
    
    if tts_pipeline is None:
        return "Pipeline not initialized"
    
    try:
        stats = tts_pipeline.get_performance_stats()
        
        info = f"""
**Performance Statistics:**
- Total Inferences: {stats['pipeline_stats']['total_inferences']}
- Average Processing Time: {stats['pipeline_stats']['avg_processing_time']:.3f}s
- Translation Cache Size: {stats['text_processor_stats']['translation_cache_size']}
- Model Inferences: {stats['model_stats']['total_inferences']}
- Average Model Time: {stats['model_stats'].get('avg_inference_time', 0):.3f}s
        """
        
        return info.strip()
        
    except Exception as e:
        return f"Error getting performance info: {e}"


def health_check() -> str:
    """Perform system health check."""
    global tts_pipeline
    
    if tts_pipeline is None:
        return "❌ Pipeline not initialized"
    
    try:
        health = tts_pipeline.health_check()
        
        if health["status"] == "healthy":
            return "✅ All systems operational"
        elif health["status"] == "degraded":
            return "⚠️ Some components have issues"
        else:
            return f"❌ System error: {health.get('error', 'Unknown error')}"
            
    except Exception as e:
        return f"❌ Health check failed: {e}"


# Application metadata
TITLE = "🎤 SpeechT5 Armenian TTS - Optimized"

DESCRIPTION = """
# High-Performance Armenian Text-to-Speech

This is an **optimized version** of SpeechT5 for Armenian language synthesis, featuring:

### 🚀 **Performance Optimizations**
- **Intelligent Text Chunking**: Handles long texts by splitting them intelligently at sentence boundaries
- **Caching**: Translation and embedding caching for faster repeated requests
- **Mixed Precision**: GPU optimization with FP16 inference when available
- **Crossfading**: Smooth audio transitions between chunks for natural-sounding longer texts

### 🎯 **Advanced Features**
- **Smart Text Processing**: Automatic number-to-word conversion with Armenian translation
- **Audio Post-Processing**: Noise gating, normalization, and dynamic range optimization
- **Robust Error Handling**: Graceful fallbacks and comprehensive logging
- **Real-time Performance Monitoring**: Track processing times and system health

### 📝 **Usage Tips**
- **Short texts** (< 200 chars): Processed directly for maximum speed
- **Long texts**: Automatically chunked with overlap for seamless audio
- **Numbers**: Automatically converted to Armenian words
- **Performance**: Enable chunking for texts longer than a few sentences

### 🎵 **Audio Quality**
- Sample Rate: 16 kHz
- Optimized for natural prosody and clear pronunciation
- Cross-fade transitions for multi-chunk synthesis

The model was trained on short clips (5-20s) but uses advanced algorithms to handle longer texts effectively.
"""

EXAMPLES = [
    # Short examples for quick testing
    ["Բարև ձեզ, ինչպե՞ս եք:", "BDL (male)", True, True],
    ["Այսօր գեղեցիկ օր է:", "BDL (male)", False, True],
    
    # Medium examples demonstrating chunking
    ["Հայաստանն ունի հարուստ պատմություն և մշակույթ: Երևանը մայրաքաղաքն է, որն ունի 2800 տարվա պատմություն:", "BDL (male)", True, True],
    
    # Long example with numbers
    ["Արարատ լեռը բարձրությունը 5165 մետր է: Այն Հայաստանի խորհրդանիշն է և գտնվում է Թուրքիայի տարածքում: Լեռան վրա ըստ Աստվածաշնչի՝ կանգնել է Նոյի տապանը 40 օրվա ջրհեղեղից հետո:", "BDL (male)", True, True],
    
    # Technical example
    ["Մեքենայի շարժիչը 150 ձիուժ է և 2.0 լիտր ծավալ ունի: Այն կարող է արագացնել 0-ից 100 կմ/ժ 8.5 վայրկյանում:", "BDL (male)", True, True],
]

# Custom CSS for better styling
CUSTOM_CSS = """
.gradio-container {
    max-width: 1200px !important;
    margin: auto !important;
}

.performance-info {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 15px;
    border-radius: 10px;
    color: white;
    margin: 10px 0;
}

.health-status {
    padding: 10px;
    border-radius: 8px;
    margin: 10px 0;
    font-weight: bold;
}

.status-healthy { background-color: #d4edda; color: #155724; }
.status-warning { background-color: #fff3cd; color: #856404; }
.status-error { background-color: #f8d7da; color: #721c24; }
"""


def create_interface():
    """Create and configure the Gradio interface."""
    
    with gr.Blocks(
        theme=gr.themes.Soft(),
        css=CUSTOM_CSS,
        title="SpeechT5 Armenian TTS"
    ) as interface:
        
        # Header
        gr.Markdown(f"# {TITLE}")
        gr.Markdown(DESCRIPTION)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Main input controls
                text_input = gr.Textbox(
                    label="📝 Input Text (Armenian)",
                    placeholder="Մուտքագրեք ձեր տեքստը այստեղ...",
                    lines=3,
                    max_lines=10
                )
                
                with gr.Row():
                    speaker_input = gr.Radio(
                        label="🎭 Speaker",
                        choices=["BDL (male)"],
                        value="BDL (male)"
                    )
                
                with gr.Row():
                    chunking_checkbox = gr.Checkbox(
                        label="🧩 Enable Intelligent Chunking",
                        value=True,
                        info="Automatically split long texts for better quality"
                    )
                    processing_checkbox = gr.Checkbox(
                        label="🎚️ Apply Audio Processing",
                        value=True,
                        info="Apply noise gating, normalization, and crossfading"
                    )
                
                # Generate button
                generate_btn = gr.Button(
                    "🎤 Generate Speech",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                # System information panel
                gr.Markdown("### 📊 System Status")
                
                health_display = gr.Textbox(
                    label="Health Status",
                    value="Initializing...",
                    interactive=False,
                    max_lines=1
                )
                
                performance_display = gr.Textbox(
                    label="Performance Stats",
                    value="No data yet",
                    interactive=False,
                    max_lines=8
                )
                
                refresh_btn = gr.Button("🔄 Refresh Stats", size="sm")
        
        # Output
        audio_output = gr.Audio(
            label="🔊 Generated Speech",
            type="numpy",
            interactive=False
        )
        
        # Examples section
        gr.Markdown("### 💡 Example Texts")
        
        # Use simpler Examples component to avoid schema issues
        examples = gr.Examples(
            examples=EXAMPLES,
            inputs=[text_input, speaker_input, chunking_checkbox, processing_checkbox],
            outputs=audio_output,
            fn=predict,
            cache_examples=False,  # Disable caching to avoid schema issues
            label="Click any example to try it:"
        )
        
        # Event handlers
        generate_btn.click(
            fn=predict,
            inputs=[text_input, speaker_input, chunking_checkbox, processing_checkbox],
            outputs=[audio_output],
            show_progress="full"
        )
        
        refresh_btn.click(
            fn=lambda: (health_check(), get_performance_info()),
            outputs=[health_display, performance_display],
            show_progress="minimal"
        )
        
        # Auto-refresh health status on load
        interface.load(
            fn=lambda: (health_check(), get_performance_info()),
            outputs=[health_display, performance_display]
        )
    
    return interface


def main():
    """Main application entry point."""
    logger.info("Starting SpeechT5 Armenian TTS Application")
    
    # Initialize pipeline
    if not initialize_pipeline():
        logger.error("Failed to initialize TTS pipeline - exiting")
        sys.exit(1)
    
    # Create and launch interface
    interface = create_interface()
    
    # Launch with optimized settings
    interface.launch(
        share=False,  # Disable share for HF Spaces
        inbrowser=False,
        show_error=True,
        quiet=False,
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860,       # Standard Gradio port
        max_threads=4,          # Limit concurrent requests
    )


if __name__ == "__main__":
    main()