Spaces:
Running
Running
File size: 20,253 Bytes
dfc1efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.utils.data import DataLoader
def atan2(y, x):
r"""Element-wise arctangent function of y/x.
Returns a new tensor with signed angles in radians.
It is an alternative implementation of torch.atan2
Args:
y (Tensor): First input tensor
x (Tensor): Second input tensor [shape=y.shape]
Returns:
Tensor: [shape=y.shape].
"""
pi = 2 * torch.asin(torch.tensor(1.0))
x += ((x == 0) & (y == 0)) * 1.0
out = torch.atan(y / x)
out += ((y >= 0) & (x < 0)) * pi
out -= ((y < 0) & (x < 0)) * pi
out *= 1 - ((y > 0) & (x == 0)) * 1.0
out += ((y > 0) & (x == 0)) * (pi / 2)
out *= 1 - ((y < 0) & (x == 0)) * 1.0
out += ((y < 0) & (x == 0)) * (-pi / 2)
return out
# Define basic complex operations on torch.Tensor objects whose last dimension
# consists in the concatenation of the real and imaginary parts.
def _norm(x: torch.Tensor) -> torch.Tensor:
r"""Computes the norm value of a torch Tensor, assuming that it
comes as real and imaginary part in its last dimension.
Args:
x (Tensor): Input Tensor of shape [shape=(..., 2)]
Returns:
Tensor: shape as x excluding the last dimension.
"""
return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2
def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise multiplication of two complex Tensors described
through their real and imaginary parts.
The result is added to the `out` tensor"""
# check `out` and allocate it if needed
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape:
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0])
else:
out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0])
return out
def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise multiplication of two complex Tensors described
through their real and imaginary parts
can work in place in case out is a only"""
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape:
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1]
out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0]
else:
out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]
out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]
return out
def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise multiplicative inverse of a Tensor with complex
entries described through their real and imaginary parts.
can work in place in case out is z"""
ez = _norm(z)
if out is None or out.shape != z.shape:
out = torch.zeros_like(z)
out[..., 0] = z[..., 0] / ez
out[..., 1] = -z[..., 1] / ez
return out
def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise complex conjugate of a Tensor with complex entries
described through their real and imaginary parts.
can work in place in case out is z"""
if out is None or out.shape != z.shape:
out = torch.zeros_like(z)
out[..., 0] = z[..., 0]
out[..., 1] = -z[..., 1]
return out
def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Invert 1x1 or 2x2 matrices
Will generate errors if the matrices are singular: user must handle this
through his own regularization schemes.
Args:
M (Tensor): [shape=(..., nb_channels, nb_channels, 2)]
matrices to invert: must be square along dimensions -3 and -2
Returns:
invM (Tensor): [shape=M.shape]
inverses of M
"""
nb_channels = M.shape[-2]
if out is None or out.shape != M.shape:
out = torch.empty_like(M)
if nb_channels == 1:
# scalar case
out = _inv(M, out)
elif nb_channels == 2:
# two channels case: analytical expression
# first compute the determinent
det = _mul(M[..., 0, 0, :], M[..., 1, 1, :])
det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :])
# invert it
invDet = _inv(det)
# then fill out the matrix with the inverse
out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :])
out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :])
out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :])
out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :])
else:
raise Exception("Only 2 channels are supported for the torch version.")
return out
# Now define the signal-processing low-level functions used by the Separator
def expectation_maximization(
y: torch.Tensor,
x: torch.Tensor,
iterations: int = 2,
eps: float = 1e-10,
batch_size: int = 200,
):
r"""Expectation maximization algorithm, for refining source separation
estimates.
This algorithm allows to make source separation results better by
enforcing multichannel consistency for the estimates. This usually means
a better perceptual quality in terms of spatial artifacts.
The implementation follows the details presented in [1]_, taking
inspiration from the original EM algorithm proposed in [2]_ and its
weighted refinement proposed in [3]_, [4]_.
It works by iteratively:
* Re-estimate source parameters (power spectral densities and spatial
covariance matrices) through :func:`get_local_gaussian_model`.
* Separate again the mixture with the new parameters by first computing
the new modelled mixture covariance matrices with :func:`get_mix_model`,
prepare the Wiener filters through :func:`wiener_gain` and apply them
with :func:`apply_filter``.
References
----------
.. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and
N. Takahashi and Y. Mitsufuji, "Improving music source separation based
on deep neural networks through data augmentation and network
blending." 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017.
.. [2] N.Q. Duong and E. Vincent and R.Gribonval. "Under-determined
reverberant audio source separation using a full-rank spatial
covariance model." IEEE Transactions on Audio, Speech, and Language
Processing 18.7 (2010): 1830-1840.
.. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source
separation with deep neural networks." IEEE/ACM Transactions on Audio,
Speech, and Language Processing 24.9 (2016): 1652-1664.
.. [4] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music
separation with deep neural networks." 2016 24th European Signal
Processing Conference (EUSIPCO). IEEE, 2016.
.. [5] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for
source separation." IEEE Transactions on Signal Processing
62.16 (2014): 4298-4310.
Args:
y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)]
initial estimates for the sources
x (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2)]
complex STFT of the mixture signal
iterations (int): [scalar]
number of iterations for the EM algorithm.
eps (float or None): [scalar]
The epsilon value to use for regularization and filters.
Returns:
y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)]
estimated sources after iterations
v (Tensor): [shape=(nb_frames, nb_bins, nb_sources)]
estimated power spectral densities
R (Tensor): [shape=(nb_bins, nb_channels, nb_channels, 2, nb_sources)]
estimated spatial covariance matrices
Notes:
* You need an initial estimate for the sources to apply this
algorithm. This is precisely what the :func:`wiener` function does.
* This algorithm *is not* an implementation of the "exact" EM
proposed in [1]_. In particular, it does compute the posterior
covariance matrices the same (exact) way. Instead, it uses the
simplified approximate scheme initially proposed in [5]_ and further
refined in [3]_, [4]_, that boils down to just take the empirical
covariance of the recent source estimates, followed by a weighted
average for the update of the spatial covariance matrix. It has been
empirically demonstrated that this simplified algorithm is more
robust for music separation.
Warning:
It is *very* important to make sure `x.dtype` is `torch.float64`
if you want double precision, because this function will **not**
do such conversion for you from `torch.complex32`, in case you want the
smaller RAM usage on purpose.
It is usually always better in terms of quality to have double
precision, by e.g. calling :func:`expectation_maximization`
with ``x.to(torch.float64)``.
"""
# dimensions
(nb_frames, nb_bins, nb_channels) = x.shape[:-1]
nb_sources = y.shape[-1]
regularization = torch.cat(
(
torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None],
torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device),
),
dim=2,
)
regularization = torch.sqrt(torch.as_tensor(eps)) * (
regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1))
)
# allocate the spatial covariance matrices
R = [
torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device)
for j in range(nb_sources)
]
weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device)
v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device)
for it in range(iterations):
# constructing the mixture covariance matrix. Doing it with a loop
# to avoid storing anytime in RAM the whole 6D tensor
# update the PSD as the average spectrogram over channels
v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2)
# update spatial covariance matrices (weighted update)
for j in range(nb_sources):
R[j] = torch.tensor(0.0, device=x.device)
weight = torch.tensor(eps, device=x.device)
pos: int = 0
batch_size = batch_size if batch_size else nb_frames
while pos < nb_frames:
t = torch.arange(pos, min(nb_frames, pos + batch_size))
pos = int(t[-1]) + 1
R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0)
weight = weight + torch.sum(v[t, ..., j], dim=0)
R[j] = R[j] / weight[..., None, None, None]
weight = torch.zeros_like(weight)
# cloning y if we track gradient, because we're going to update it
if y.requires_grad:
y = y.clone()
pos = 0
while pos < nb_frames:
t = torch.arange(pos, min(nb_frames, pos + batch_size))
pos = int(t[-1]) + 1
y[t, ...] = torch.tensor(0.0, device=x.device, dtype=x.dtype)
# compute mix covariance matrix
Cxx = regularization
for j in range(nb_sources):
Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone())
# invert it
inv_Cxx = _invert(Cxx)
# separate the sources
for j in range(nb_sources):
# create a wiener gain for this source
gain = torch.zeros_like(inv_Cxx)
# computes multichannel Wiener gain as v_j R_j inv_Cxx
indices = torch.cartesian_prod(
torch.arange(nb_channels),
torch.arange(nb_channels),
torch.arange(nb_channels),
)
for index in indices:
gain[:, :, index[0], index[1], :] = _mul_add(
R[j][None, :, index[0], index[2], :].clone(),
inv_Cxx[:, :, index[2], index[1], :],
gain[:, :, index[0], index[1], :],
)
gain = gain * v[t, ..., None, None, None, j]
# apply it to the mixture
for i in range(nb_channels):
y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j])
return y, v, R
def wiener(
targets_spectrograms: torch.Tensor,
mix_stft: torch.Tensor,
iterations: int = 1,
softmask: bool = False,
residual: bool = False,
scale_factor: float = 10.0,
eps: float = 1e-10,
):
"""Wiener-based separation for multichannel audio.
The method uses the (possibly multichannel) spectrograms of the
sources to separate the (complex) Short Term Fourier Transform of the
mix. Separation is done in a sequential way by:
* Getting an initial estimate. This can be done in two ways: either by
directly using the spectrograms with the mixture phase, or
by using a softmasking strategy. This initial phase is controlled
by the `softmask` flag.
* If required, adding an additional residual target as the mix minus
all targets.
* Refinining these initial estimates through a call to
:func:`expectation_maximization` if the number of iterations is nonzero.
This implementation also allows to specify the epsilon value used for
regularization. It is based on [1]_, [2]_, [3]_, [4]_.
References
----------
.. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and
N. Takahashi and Y. Mitsufuji, "Improving music source separation based
on deep neural networks through data augmentation and network
blending." 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017.
.. [2] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source
separation with deep neural networks." IEEE/ACM Transactions on Audio,
Speech, and Language Processing 24.9 (2016): 1652-1664.
.. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music
separation with deep neural networks." 2016 24th European Signal
Processing Conference (EUSIPCO). IEEE, 2016.
.. [4] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for
source separation." IEEE Transactions on Signal Processing
62.16 (2014): 4298-4310.
Args:
targets_spectrograms (Tensor): spectrograms of the sources
[shape=(nb_frames, nb_bins, nb_channels, nb_sources)].
This is a nonnegative tensor that is
usually the output of the actual separation method of the user. The
spectrograms may be mono, but they need to be 4-dimensional in all
cases.
mix_stft (Tensor): [shape=(nb_frames, nb_bins, nb_channels, complex=2)]
STFT of the mixture signal.
iterations (int): [scalar]
number of iterations for the EM algorithm
softmask (bool): Describes how the initial estimates are obtained.
* if `False`, then the mixture phase will directly be used with the
spectrogram as initial estimates.
* if `True`, initial estimates are obtained by multiplying the
complex mix element-wise with the ratio of each target spectrogram
with the sum of them all. This strategy is better if the model are
not really good, and worse otherwise.
residual (bool): if `True`, an additional target is created, which is
equal to the mixture minus the other targets, before application of
expectation maximization
eps (float): Epsilon value to use for computing the separations.
This is used whenever division with a model energy is
performed, i.e. when softmasking and when iterating the EM.
It can be understood as the energy of the additional white noise
that is taken out when separating.
Returns:
Tensor: shape=(nb_frames, nb_bins, nb_channels, complex=2, nb_sources)
STFT of estimated sources
Notes:
* Be careful that you need *magnitude spectrogram estimates* for the
case `softmask==False`.
* `softmask=False` is recommended
* The epsilon value will have a huge impact on performance. If it's
large, only the parts of the signal with a significant energy will
be kept in the sources. This epsilon then directly controls the
energy of the reconstruction error.
Warning:
As in :func:`expectation_maximization`, we recommend converting the
mixture `x` to double precision `torch.float64` *before* calling
:func:`wiener`.
"""
if softmask:
# if we use softmask, we compute the ratio mask for all targets and
# multiply by the mix stft
y = (
mix_stft[..., None]
* (
targets_spectrograms
/ (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype))
)[..., None, :]
)
else:
# otherwise, we just multiply the targets spectrograms with mix phase
# we tacitly assume that we have magnitude estimates.
angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None]
nb_sources = targets_spectrograms.shape[-1]
y = torch.zeros(
mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device
)
y[..., 0, :] = targets_spectrograms * torch.cos(angle)
y[..., 1, :] = targets_spectrograms * torch.sin(angle)
if residual:
# if required, adding an additional target as the mix minus
# available targets
y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1)
if iterations == 0:
return y
# we need to refine the estimates. Scales down the estimates for
# numerical stability
max_abs = torch.max(
torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device),
torch.sqrt(_norm(mix_stft)).max() / scale_factor,
)
mix_stft = mix_stft / max_abs
y = y / max_abs
# call expectation maximization
y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0]
# scale estimates up again
y = y * max_abs
return y
def _covariance(y_j):
"""
Compute the empirical covariance for a source.
Args:
y_j (Tensor): complex stft of the source.
[shape=(nb_frames, nb_bins, nb_channels, 2)].
Returns:
Cj (Tensor): [shape=(nb_frames, nb_bins, nb_channels, nb_channels, 2)]
just y_j * conj(y_j.T): empirical covariance for each TF bin.
"""
(nb_frames, nb_bins, nb_channels) = y_j.shape[:-1]
Cj = torch.zeros(
(nb_frames, nb_bins, nb_channels, nb_channels, 2),
dtype=y_j.dtype,
device=y_j.device,
)
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels))
for index in indices:
Cj[:, :, index[0], index[1], :] = _mul_add(
y_j[:, :, index[0], :],
_conj(y_j[:, :, index[1], :]),
Cj[:, :, index[0], index[1], :],
)
return Cj
|