Spaces:
Sleeping
Sleeping
File size: 1,519 Bytes
9c5e00f d53739c 00ca433 9c5e00f 6424758 546aff0 00ca433 312f9a4 6424758 9c5e00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# Import necessary libraries
from transformers import AutoModel, AutoTokenizer
import streamlit as st
import PyPDF2
import pytesseract
from PIL import Image
# Your Hugging Face access token
access_token = "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"
# Correct model name or path
model_name = "bigcode/starcoderplus"
# Load model and tokenizer
model = AutoModel.from_pretrained(model_name, use_auth_token=access_token)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
# Streamlit app
st.title("Conversational AI Chatbot")
# User input for code-related question
user_input = st.text_input("Enter your code-related question:")
if user_input:
# Tokenize and generate code
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(**inputs)
code = tokenizer.decode(outputs[0])
st.code(code) # Display the generated code
# User input for PDF reading
pdf_file = st.file_uploader("Upload a PDF file:", type=["pdf"])
if pdf_file:
pdf_reader = PyPDF2.PdfFileReader(pdf_file)
pdf_text = ""
for page_num in range(pdf_reader.numPages):
page = pdf_reader.getPage(page_num)
pdf_text += page.extractText()
st.text(pdf_text) # Display the extracted text
# User input for OCR (image to text)
image_file = st.file_uploader("Upload an image for OCR:", type=["png", "jpg", "jpeg"])
if image_file:
image = Image.open(image_file)
ocr_text = pytesseract.image_to_string(image)
st.text(ocr_text) # Display the extracted text
|