File size: 12,395 Bytes
426874e
 
 
 
 
 
 
32d3fde
426874e
 
 
 
 
 
 
 
 
 
32d3fde
 
 
 
 
a708c61
32d3fde
 
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
426874e
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
426874e
 
 
 
32d3fde
426874e
32d3fde
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
 
 
 
 
 
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
426874e
 
 
 
 
 
 
 
 
 
32d3fde
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0875ad7
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
 
 
 
 
 
426874e
 
 
 
 
 
 
 
32d3fde
 
 
 
 
 
 
 
 
 
426874e
 
32d3fde
 
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d3fde
 
 
426874e
 
 
 
 
32d3fde
 
 
426874e
 
 
 
32d3fde
 
 
 
 
 
 
 
 
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""Run NatureLM-audio over a set of audio files paths or a directory with audio files."""

import argparse
from pathlib import Path

import numpy as np
import pandas as pd
import librosa
import torch

from NatureLM.config import Config
from NatureLM.models import NatureLM
from NatureLM.processors import NatureLMAudioProcessor
from NatureLM.utils import move_to_device

_MAX_LENGTH_SECONDS = 10
_MIN_CHUNK_LENGTH_SECONDS = 0.5
_SAMPLE_RATE = 16000  # Assuming the model uses a sample rate of 16kHz
_AUDIO_FILE_EXTENSIONS = [
    ".wav",
    ".mp3",
    ".flac",
    ".ogg",
    ".mp4"
]  # Add other audio file formats as needed
_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
__root_dir = Path(__file__).parent.parent
_DEFAULT_CONFIG_PATH = __root_dir / "configs" / "inference.yml"


def load_model_and_config(
    cfg_path: str | Path = _DEFAULT_CONFIG_PATH, device: str = _DEVICE
) -> tuple[NatureLM, Config]:
    """Load the NatureLM model and configuration.
    Returns:
        tuple: The loaded model and configuration.
    """
    model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
    model = model.to(device).eval()
    model.llama_tokenizer.pad_token_id = model.llama_tokenizer.eos_token_id
    model.llama_model.generation_config.pad_token_id = (
        model.llama_tokenizer.pad_token_id
    )

    cfg = Config.from_sources(cfg_path)
    return model, cfg


def output_template(model_output: str, start_time: float, end_time: float) -> str:
    """Format the output of the model."""
    return f"#{start_time:.2f}s - {end_time:.2f}s#: {model_output}\n"


def sliding_window_inference(
    audio: str | Path | np.ndarray,
    query: str,
    processor: NatureLMAudioProcessor,
    model: NatureLM,
    cfg: Config,
    window_length_seconds: float = 10.0,
    hop_length_seconds: float = 10.0,
    input_sr: int = _SAMPLE_RATE,
    device: str = _DEVICE,
) -> list[dict[str, any]]:
    """Run inference on a long audio file using sliding window approach.

    Args:
        audio (str | Path | np.ndarray): Path to the audio file.
        query (str): Query for the model.
        processor (NatureLMAudioProcessor): Audio processor.
        model (NatureLM): NatureLM model.
        cfg (Config): Model configuration.
        window_length_seconds (float): Length of the sliding window in seconds.
        hop_length_seconds (float): Hop length for the sliding window in seconds.
        input_sr (int): Sample rate of the audio file.

    Returns:
        str: The output of the model.

    Raises:
        ValueError: If the audio file is too short or if the audio file path is invalid.
    """
    if isinstance(audio, str) or isinstance(audio, Path):
        audio_array, input_sr = librosa.load(str(audio), sr=None, mono=False)
    elif isinstance(audio, np.ndarray):
        audio_array = audio
        print(f"Using provided sample rate: {input_sr}")

    audio_array = audio_array.squeeze()
    if audio_array.ndim > 1:
        axis_to_average = int(np.argmin(audio_array.shape))
        audio_array = audio_array.mean(axis=axis_to_average)
        audio_array = audio_array.squeeze()

    # Do initial check that the audio is long enough
    if audio_array.shape[-1] < int(_MIN_CHUNK_LENGTH_SECONDS * input_sr):
        raise ValueError(
            f"Audio is too short. Minimum length is {_MIN_CHUNK_LENGTH_SECONDS} seconds."
        )

    start = 0
    stride = int(hop_length_seconds * input_sr)
    window_length = int(window_length_seconds * input_sr)
    window_id = 0

    output = []  # Initialize output list
    while True:
        chunk = audio_array[start : start + window_length]
        if chunk.shape[-1] < int(_MIN_CHUNK_LENGTH_SECONDS * input_sr):
            break

        # Resamples, pads, truncates and creates torch Tensor
        audio_tensor, prompt_list = processor([chunk], [query], [input_sr])

        input_to_model = {
            "raw_wav": audio_tensor,
            "prompt": prompt_list[0],
            "audio_chunk_sizes": 1,
            "padding_mask": torch.zeros_like(audio_tensor).to(torch.bool),
        }
        input_to_model = move_to_device(input_to_model, device)

        # generate
        prediction: str = model.generate(input_to_model, cfg.generate, prompt_list)[0]

        # Post-process the prediction
        # prediction = output_template(prediction, start / input_sr, (start + window_length) / input_sr)
        # output += prediction
        output.append(
            {
                "start_time": start / input_sr,
                "end_time": (start + window_length) / input_sr,
                "prediction": prediction,
                "window_number": window_id,
            }
        )

        # Move the window
        start += stride

        if start + window_length > audio_array.shape[-1]:
            break

    return output


class Pipeline:
    """Pipeline for running NatureLM-audio inference on a list of audio files or audio arrays"""

    def __init__(
        self, model: NatureLM = None, cfg_path: str | Path = _DEFAULT_CONFIG_PATH
    ):
        self.cfg_path = cfg_path

        # Load model and config
        if model is not None:
            self.cfg = Config.from_sources(cfg_path)
            self.model = model
        else:
            # Download model from hub
            self.model, self.cfg = load_model_and_config(cfg_path)

        self.processor = NatureLMAudioProcessor(
            sample_rate=_SAMPLE_RATE, max_length_seconds=_MAX_LENGTH_SECONDS
        )

    def __call__(
        self,
        audios: list[str | Path | np.ndarray],
        queries: str | list[str],
        window_length_seconds: float = 10.0,
        hop_length_seconds: float = 10.0,
        input_sample_rate: int = _SAMPLE_RATE,
        verbose: bool = False,
    ) -> list[str]:
        """Run inference on a list of audio file paths or a single audio file with a
        single query or a list of queries. If multiple queries are provided,
        we assume that they are in the same order as the audio files. If a single query
        is provided, it will be used for all audio files.

        Args:
            audios (list[str | Path | np.ndarray]): List of audio file paths or a single audio file path or audio array(s)
            queries (str | list[str]): Queries for the model.
            window_length_seconds (float): Length of the sliding window in seconds. Defaults to 10.0.
            hop_length_seconds (float): Hop length for the sliding window in seconds. Defaults to 10.0.
            input_sample_rate (int): Sample rate of the audio. Defaults to 16000, which is the model's sample rate.
            verbose (bool): If True, print the output of the model for each audio file.
            Defaults to False.

        Returns:
            list[list[dict]]: List of model outputs for each audio file. Each output is a list of dictionaries
            containing the start time, end time, and prediction for each chunk of audio.

        Raises:
            ValueError: If the number of audio files and queries do not match.
        """
        if isinstance(audios, str) or isinstance(audios, Path):
            audios = [audios]

        if isinstance(queries, str):
            queries = [queries] * len(audios)

        if len(audios) != len(queries):
            raise ValueError("Number of audio files and queries must match.")

        # Run inference
        results = []
        for audio, query in zip(audios, queries):
            output = sliding_window_inference(
                audio,
                query,
                self.processor,
                self.model,
                self.cfg,
                window_length_seconds,
                hop_length_seconds,
                input_sr=input_sample_rate,
            )
            results.append(output)
            if verbose:
                print(f"Processed {audio}, model output:\n=======\n{output}\n=======")
        return results


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser("Run NatureLM-audio inference")
    parser.add_argument(
        "-a",
        "--audio",
        type=str,
        required=True,
        help="Path to an audio file or a directory containing audio files",
    )
    parser.add_argument(
        "-q", "--query", type=str, required=True, help="Query for the model"
    )
    parser.add_argument(
        "--cfg-path",
        type=str,
        default="configs/inference.yml",
        help="Path to the configuration file for the model",
    )
    parser.add_argument(
        "--output_path",
        type=str,
        default="inference_output.jsonl",
        help="Output path for the results",
    )
    parser.add_argument(
        "--window_length_seconds",
        type=float,
        default=10.0,
        help="Length of the sliding window in seconds",
    )
    parser.add_argument(
        "--hop_length_seconds",
        type=float,
        default=10.0,
        help="Hop length for the sliding window in seconds",
    )
    args = parser.parse_args()

    return args


def main(
    cfg_path: str | Path,
    audio_path: str | Path,
    query: str,
    output_path: str,
    window_length_seconds: float,
    hop_length_seconds: float,
) -> None:
    """Main function to run the NatureLM-audio inference script.
    It takes command line arguments for audio file path, query, output path,
    window length, and hop length. It processes the audio files and saves the
    results to a CSV file.

    Args:
        cfg_path (str | Path): Path to the configuration file.
        audio_path (str | Path): Path to the audio file or directory.
        query (str): Query for the model.
        output_path (str): Path to save the output results.
        window_length_seconds (float): Length of the sliding window in seconds.
        hop_length_seconds (float): Hop length for the sliding window in seconds.

    Raises:
        ValueError: If the audio file path is invalid or if the query is empty.
        ValueError: If no audio files are found.
        ValueError: If the audio file extension is not supported.
    """

    # Prepare sample
    audio_path = Path(audio_path)
    if audio_path.is_dir():
        audio_paths = []
        print(
            f"Searching for audio files in {str(audio_path)} with extensions {', '.join(_AUDIO_FILE_EXTENSIONS)}"
        )
        for ext in _AUDIO_FILE_EXTENSIONS:
            audio_paths.extend(list(audio_path.rglob(f"*{ext}")))

        print(f"Found {len(audio_paths)} audio files in {str(audio_path)}")
    else:
        # check that the extension is valid
        if not any(audio_path.suffix == ext for ext in _AUDIO_FILE_EXTENSIONS):
            raise ValueError(
                f"Invalid audio file extension. Supported extensions are: {', '.join(_AUDIO_FILE_EXTENSIONS)}"
            )
        audio_paths = [audio_path]

    # check that query is not empty
    if not query:
        raise ValueError("Query cannot be empty")
    if not audio_paths:
        raise ValueError(
            "No audio files found. Please check the path or file extensions."
        )

    # Load model and config
    model, cfg = load_model_and_config(cfg_path)

    # Load audio processor
    processor = NatureLMAudioProcessor(
        sample_rate=_SAMPLE_RATE, max_length_seconds=_MAX_LENGTH_SECONDS
    )

    # Run inference
    results = {"audio_path": [], "output": []}
    for path in audio_paths:
        output = sliding_window_inference(
            path,
            query,
            processor,
            model,
            cfg,
            window_length_seconds,
            hop_length_seconds,
        )
        results["audio_path"].append(str(path))
        results["output"].append(output)
        print(f"Processed {path}, model output:\n=======\n{output}\n=======\n")

    # Save results as a csv
    output_path = Path(output_path)
    output_path.parent.mkdir(parents=True, exist_ok=True)

    df = pd.DataFrame(results)
    df.to_json(output_path, orient="records", lines=True)
    print(f"Results saved to {output_path}")


if __name__ == "__main__":
    args = parse_args()
    main(
        cfg_path=args.cfg_path,
        audio_path=args.audio,
        query=args.query,
        output_path=args.output_path,
        window_length_seconds=args.window_length_seconds,
        hop_length_seconds=args.hop_length_seconds,
    )