File size: 16,038 Bytes
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import numpy as np
import cv2
import torch
import flow_vis

from matplotlib import cm
import torch.nn.functional as F
import torchvision.transforms as transforms
from moviepy.editor import ImageSequenceClip
import matplotlib.pyplot as plt
from tqdm import tqdm

def read_video_from_path(path):
    cap = cv2.VideoCapture(path)
    if not cap.isOpened():
        print("Error opening video file")
    else:
        frames = []
        while cap.isOpened():
            ret, frame = cap.read()
            if ret == True:
                frames.append(np.array(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
            else:
                break
        cap.release()
    return np.stack(frames)


class Visualizer:
    def __init__(
        self,
        save_dir: str = "./results",
        grayscale: bool = False,
        pad_value: int = 0,
        fps: int = 10,
        mode: str = "rainbow",  # 'cool', 'optical_flow'
        linewidth: int = 1,
        show_first_frame: int = 10,
        tracks_leave_trace: int = 0,  # -1 for infinite
    ):
        self.mode = mode
        self.save_dir = save_dir
        self.vtxt_path = os.path.join(save_dir, "videos.txt")
        self.ttxt_path = os.path.join(save_dir, "trackings.txt")
        if mode == "rainbow":
            self.color_map = cm.get_cmap("gist_rainbow")
        elif mode == "cool":
            self.color_map = cm.get_cmap(mode)
        self.show_first_frame = show_first_frame
        self.grayscale = grayscale
        self.tracks_leave_trace = tracks_leave_trace
        self.pad_value = pad_value
        self.linewidth = linewidth
        self.fps = fps

    def visualize(
        self,
        video: torch.Tensor,  # (B,T,C,H,W)
        tracks: torch.Tensor,  # (B,T,N,2)
        visibility: torch.Tensor = None,  # (B, T, N, 1) bool
        gt_tracks: torch.Tensor = None,  # (B,T,N,2)
        segm_mask: torch.Tensor = None,  # (B,1,H,W)
        filename: str = "video",
        writer=None,  # tensorboard Summary Writer, used for visualization during training
        step: int = 0,
        query_frame: int = 0,
        save_video: bool = True,
        compensate_for_camera_motion: bool = False,
        rigid_part = None,
        video_depth = None # (B,T,C,H,W)
    ):
        if compensate_for_camera_motion:
            assert segm_mask is not None
        if segm_mask is not None:
            coords = tracks[0, query_frame].round().long()
            segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long()

        video = F.pad(
            video,
            (self.pad_value, self.pad_value, self.pad_value, self.pad_value),
            "constant",
            255,
        )

        if video_depth is not None:
            video_depth = (video_depth*255).cpu().numpy().astype(np.uint8)
            video_depth = ([cv2.applyColorMap(video_depth[0,i,0], cv2.COLORMAP_INFERNO) 
                            for i in range(video_depth.shape[1])])
            video_depth = np.stack(video_depth, axis=0)
            video_depth = torch.from_numpy(video_depth).permute(0, 3, 1, 2)[None]

        tracks = tracks + self.pad_value

        if self.grayscale:
            transform = transforms.Grayscale()
            video = transform(video)
            video = video.repeat(1, 1, 3, 1, 1)

        tracking_video = self.draw_tracks_on_video(
            video=video,
            tracks=tracks,
            visibility=visibility,
            segm_mask=segm_mask,
            gt_tracks=gt_tracks,
            query_frame=query_frame,
            compensate_for_camera_motion=compensate_for_camera_motion,
            rigid_part=rigid_part
        )

        if save_video:
            # import ipdb; ipdb.set_trace()
            tracking_dir = os.path.join(self.save_dir, "tracking")
            if not os.path.exists(tracking_dir):
                os.makedirs(tracking_dir)
            self.save_video(tracking_video, filename=filename+"_tracking", 
                            savedir=tracking_dir, writer=writer, step=step)
            # with open(self.ttxt_path, 'a') as file:
            #     file.write(f"tracking/{filename}_tracking.mp4\n")

            videos_dir = os.path.join(self.save_dir, "videos")
            if not os.path.exists(videos_dir):
                os.makedirs(videos_dir)
            self.save_video(video, filename=filename, 
                            savedir=videos_dir, writer=writer, step=step)
            # with open(self.vtxt_path, 'a') as file:
            #     file.write(f"videos/{filename}.mp4\n")
            if video_depth is not None:
                self.save_video(video_depth, filename=filename+"_depth", 
                                savedir=os.path.join(self.save_dir, "depth"), writer=writer, step=step)
        return tracking_video

    def save_video(self, video, filename, savedir=None, writer=None, step=0):
        if writer is not None:
            writer.add_video(
                f"{filename}",
                video.to(torch.uint8),
                global_step=step,
                fps=self.fps,
            )
        else:
            os.makedirs(self.save_dir, exist_ok=True)
            wide_list = list(video.unbind(1))
            wide_list = [wide[0].permute(1, 2, 0).cpu().numpy() for wide in wide_list]
            # clip = ImageSequenceClip(wide_list[2:-1], fps=self.fps)
            clip = ImageSequenceClip(wide_list, fps=self.fps)

            # Write the video file
            if savedir is None:
                save_path = os.path.join(self.save_dir, f"{filename}.mp4")
            else:
                save_path = os.path.join(savedir, f"{filename}.mp4")
            clip.write_videofile(save_path, codec="libx264", fps=self.fps, logger=None)

            print(f"Video saved to {save_path}")

    def draw_tracks_on_video(
        self,
        video: torch.Tensor,
        tracks: torch.Tensor,
        visibility: torch.Tensor = None,
        segm_mask: torch.Tensor = None,
        gt_tracks=None,
        query_frame: int = 0,
        compensate_for_camera_motion=False,
        rigid_part=None,
    ):
        B, T, C, H, W = video.shape
        _, _, N, D = tracks.shape

        assert D == 3
        assert C == 3
        video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy()  # S, H, W, C
        tracks = tracks[0].detach().cpu().numpy()  # S, N, 2
        if gt_tracks is not None:
            gt_tracks = gt_tracks[0].detach().cpu().numpy()

        res_video = []

        # process input video
        # for rgb in video:
        #     res_video.append(rgb.copy())
        
        # create a blank tensor with the same shape as the video
        for rgb in video:
            black_frame = np.zeros_like(rgb.copy(), dtype=rgb.dtype)
            res_video.append(black_frame)

        vector_colors = np.zeros((T, N, 3))

        if self.mode == "optical_flow":

            vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None])

        elif segm_mask is None:
            if self.mode == "rainbow":
                x_min, x_max = tracks[0, :, 0].min(), tracks[0, :, 0].max()
                y_min, y_max = tracks[0, :, 1].min(), tracks[0, :, 1].max()

                z_inv = 1/tracks[0, :, 2]
                z_min, z_max = np.percentile(z_inv, [2, 98])
                
                norm_x = plt.Normalize(x_min, x_max)
                norm_y = plt.Normalize(y_min, y_max)
                norm_z = plt.Normalize(z_min, z_max)

                for n in range(N):
                    r = norm_x(tracks[0, n, 0])
                    g = norm_y(tracks[0, n, 1])
                    # r = 0
                    # g = 0
                    b = norm_z(1/tracks[0, n, 2])
                    color = np.array([r, g, b])[None] * 255
                    vector_colors[:, n] = np.repeat(color, T, axis=0)
            else:
                # color changes with time
                for t in range(T):
                    color = np.array(self.color_map(t / T)[:3])[None] * 255
                    vector_colors[t] = np.repeat(color, N, axis=0)
        else:
            if self.mode == "rainbow":
                vector_colors[:, segm_mask <= 0, :] = 255

                x_min, x_max = tracks[0, :, 0].min(), tracks[0, :, 0].max()
                y_min, y_max = tracks[0, :, 1].min(), tracks[0, :, 1].max()
                z_min, z_max = tracks[0, :, 2].min(), tracks[0, :, 2].max()

                norm_x = plt.Normalize(x_min, x_max)
                norm_y = plt.Normalize(y_min, y_max)
                norm_z = plt.Normalize(z_min, z_max)

                for n in range(N):
                    r = norm_x(tracks[0, n, 0])
                    g = norm_y(tracks[0, n, 1])
                    b = norm_z(tracks[0, n, 2])
                    color = np.array([r, g, b])[None] * 255
                    vector_colors[:, n] = np.repeat(color, T, axis=0)

            else:
                # color changes with segm class
                segm_mask = segm_mask.cpu()
                color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32)
                color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0
                color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0
                vector_colors = np.repeat(color[None], T, axis=0)

        # Draw tracks
        if self.tracks_leave_trace != 0:
            for t in range(1, T):
                first_ind = (
                    max(0, t - self.tracks_leave_trace)
                    if self.tracks_leave_trace >= 0
                    else 0
                )
                curr_tracks = tracks[first_ind : t + 1]
                curr_colors = vector_colors[first_ind : t + 1]
                if compensate_for_camera_motion:
                    diff = (
                        tracks[first_ind : t + 1, segm_mask <= 0]
                        - tracks[t : t + 1, segm_mask <= 0]
                    ).mean(1)[:, None]

                    curr_tracks = curr_tracks - diff
                    curr_tracks = curr_tracks[:, segm_mask > 0]
                    curr_colors = curr_colors[:, segm_mask > 0]

                res_video[t] = self._draw_pred_tracks(
                    res_video[t],
                    curr_tracks,
                    curr_colors,
                )
                if gt_tracks is not None:
                    res_video[t] = self._draw_gt_tracks(
                        res_video[t], gt_tracks[first_ind : t + 1]
                    )

        if rigid_part is not None:
            cls_label = torch.unique(rigid_part)
            cls_num = len(torch.unique(rigid_part))
            # visualize the clustering results 
            cmap = plt.get_cmap('jet')  # get the color mapping
            colors = cmap(np.linspace(0, 1, cls_num))  
            colors = (colors[:, :3] * 255) 
            color_map = {lable.item(): color for lable, color in zip(cls_label, colors)}

        # Draw points
        for t in tqdm(range(T)):
            # Create a list to store information for each point
            points_info = []
            for i in range(N):
                coord = (tracks[t, i, 0], tracks[t, i, 1])
                depth = tracks[t, i, 2]  # assume the third dimension is depth
                visibile = True
                if visibility is not None:
                    visibile = visibility[0, t, i]
                if coord[0] != 0 and coord[1] != 0:
                    if not compensate_for_camera_motion or (
                        compensate_for_camera_motion and segm_mask[i] > 0
                    ):
                        points_info.append((i, coord, depth, visibile))
            
            # Sort points by depth, points with smaller depth (closer) will be drawn later
            points_info.sort(key=lambda x: x[2], reverse=True)
            
            for i, coord, _, visibile in points_info:
                if rigid_part is not None:
                    color = color_map[rigid_part.squeeze()[i].item()]
                    cv2.circle(
                        res_video[t],
                        coord,
                        int(self.linewidth * 2),
                        color.tolist(),
                        thickness=-1 if visibile else 2
                        -1,
                    )
                else:
                    # Determine rectangle width based on the distance between adjacent tracks in the first frame
                    if t == 0:
                        distances = np.linalg.norm(tracks[0] - tracks[0, i], axis=1)
                        distances = distances[distances > 0]
                        rect_size = int(np.min(distances))/2
                    
                    # Define coordinates for top-left and bottom-right corners of the rectangle
                    top_left = (int(coord[0] - rect_size), int(coord[1] - rect_size/1.5)) # Rectangle width is 1.5x (video aspect ratio is 1.5:1)
                    bottom_right = (int(coord[0] + rect_size), int(coord[1] + rect_size/1.5))

                    # Draw rectangle
                    cv2.rectangle(
                        res_video[t],
                        top_left,
                        bottom_right,
                        vector_colors[t, i].tolist(),
                        thickness=-1 if visibile else 0
                        -1,
                    )

        # Construct the final rgb sequence
        return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte()

    def _draw_pred_tracks(
        self,
        rgb: np.ndarray,  # H x W x 3
        tracks: np.ndarray,  # T x 2
        vector_colors: np.ndarray,
        alpha: float = 0.5,
    ):
        T, N, _ = tracks.shape

        for s in range(T - 1):
            vector_color = vector_colors[s]
            original = rgb.copy()
            alpha = (s / T) ** 2
            for i in range(N):
                coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1]))
                coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1]))
                if coord_y[0] != 0 and coord_y[1] != 0:
                    cv2.line(
                        rgb,
                        coord_y,
                        coord_x,
                        vector_color[i].tolist(),
                        self.linewidth,
                        cv2.LINE_AA,
                    )
            if self.tracks_leave_trace > 0:
                rgb = cv2.addWeighted(rgb, alpha, original, 1 - alpha, 0)
        return rgb

    def _draw_gt_tracks(
        self,
        rgb: np.ndarray,  # H x W x 3,
        gt_tracks: np.ndarray,  # T x 2
    ):
        T, N, _ = gt_tracks.shape
        color = np.array((211.0, 0.0, 0.0))

        for t in range(T):
            for i in range(N):
                gt_tracks = gt_tracks[t][i]
                #  draw a red cross
                if gt_tracks[0] > 0 and gt_tracks[1] > 0:
                    length = self.linewidth * 3
                    coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length)
                    coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length)
                    cv2.line(
                        rgb,
                        coord_y,
                        coord_x,
                        color,
                        self.linewidth,
                        cv2.LINE_AA,
                    )
                    coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length)
                    coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length)
                    cv2.line(
                        rgb,
                        coord_y,
                        coord_x,
                        color,
                        self.linewidth,
                        cv2.LINE_AA,
                    )
        return rgb