File size: 11,040 Bytes
c2e96d2
 
 
 
 
 
 
eeb4af6
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb4af6
 
c2e96d2
 
 
 
 
 
 
f321059
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ef2fe
 
 
 
 
 
c2e96d2
 
 
 
 
 
 
 
 
 
 
00ef2fe
 
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ef2fe
c2e96d2
00ef2fe
 
 
c2e96d2
 
00ef2fe
 
 
 
 
 
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
00ef2fe
c2e96d2
 
00ef2fe
c2e96d2
 
 
 
 
 
853dea9
 
 
 
 
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ef2fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e96d2
 
 
 
 
00ef2fe
 
c2e96d2
 
 
 
 
 
00ef2fe
 
 
c2e96d2
00ef2fe
c2e96d2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import spaces
import os
import torch
import random
from huggingface_hub import snapshot_download
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Download the model files
ckpt_dir = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl")

# Load the models
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16)

pipe = StableDiffusionXLPipeline.from_pretrained(
    ckpt_dir,
    vae=vae,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16"
)
pipe = pipe.to("cuda")

pipe.unet.set_attn_processor(AttnProcessor2_0())

# Define samplers
samplers = {
    "Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config),
    "DPM++ 2M": DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", use_karras_sigmas=True),
    "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
}

DEFAULT_POSITIVE_PREFIX = "score_9, score_8_up, score_7_up, BREAK"
DEFAULT_POSITIVE_SUFFIX = "(masterpiece), best quality, very aesthetic, perfect face"
DEFAULT_NEGATIVE_PREFIX = "score_1, score_2, score_3, text"
DEFAULT_NEGATIVE_SUFFIX = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"

# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

# Florence caption function
def florence_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<DETAILED_CAPTION>"]

# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
    if model_choice == "Medium":
        result = enhancer_medium("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    else:  # Long
        result = enhancer_long("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    
    return enhanced_text

@spaces.GPU(duration=120)
def generate_image(additional_positive_prompt, additional_negative_prompt, height, width, num_inference_steps,
                   guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler, clip_skip, 
                   use_florence2, use_medium_enhancer, use_long_enhancer,
                   use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix,
                   input_image=None, progress=gr.Progress(track_tqdm=True)):
    
    if use_random_seed:
        seed = random.randint(0, 2**32 - 1)
    else:
        seed = int(seed)  # Ensure seed is an integer
    
    # Set the scheduler based on the selected sampler
    pipe.scheduler = samplers[sampler]
    
    # Set clip skip
    pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
    
    # Start with the default positive prompt prefix if enabled
    full_positive_prompt = DEFAULT_POSITIVE_PREFIX + ", " if use_positive_prefix else ""

    # Add Florence-2 caption if enabled and image is provided
    if use_florence2 and input_image is not None:
        florence2_caption = florence_caption(input_image)
        florence2_caption = florence2_caption.lower().replace('.', ',')
        additional_positive_prompt = f"{florence2_caption}, {additional_positive_prompt}" if additional_positive_prompt else florence2_caption

    # Enhance only the additional positive prompt if enhancers are enabled
    if additional_positive_prompt:
        enhanced_prompt = additional_positive_prompt
        if use_medium_enhancer:
            medium_enhanced = enhance_prompt(enhanced_prompt, "Medium")
            medium_enhanced = medium_enhanced.lower().replace('.', ',')
            enhanced_prompt = f"{enhanced_prompt}, {medium_enhanced}"
        if use_long_enhancer:
            long_enhanced = enhance_prompt(enhanced_prompt, "Long")
            long_enhanced = long_enhanced.lower().replace('.', ',')
            enhanced_prompt = f"{enhanced_prompt}, {long_enhanced}"
        full_positive_prompt += enhanced_prompt

    # Add the default positive suffix if enabled
    if use_positive_suffix:
        full_positive_prompt += f", {DEFAULT_POSITIVE_SUFFIX}"
    
    # Combine default negative prompt with additional negative prompt
    full_negative_prompt = ""
    if use_negative_prefix:
        full_negative_prompt += f"{DEFAULT_NEGATIVE_PREFIX}, "
    full_negative_prompt += additional_negative_prompt if additional_negative_prompt else ""
    if use_negative_suffix:
        full_negative_prompt += f", {DEFAULT_NEGATIVE_SUFFIX}"
    
    try:
        image = pipe(
            prompt=full_positive_prompt,
            negative_prompt=full_negative_prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            generator=torch.Generator(pipe.device).manual_seed(seed)
        ).images
        return image, seed, full_positive_prompt, full_negative_prompt
    except Exception as e:
        print(f"Error during image generation: {str(e)}")
        return None, seed, full_positive_prompt, full_negative_prompt

# Gradio interface
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
    gr.HTML("""
    <h1 align="center">Pony Realism v21 SDXL - Text-to-Image Generation</h1>
    <p align="center">
    <a href="https://huggingface.co/John6666/pony-realism-v21main-sdxl/" target="_blank">[HF Model Page]</a>
    <a href="https://civitai.com/models/372465/pony-realism" target="_blank">[civitai Model Page]</a>
    <a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
    <a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
    <a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a>
    </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Add your positive prompt here")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Add your negative prompt here")
            
            with gr.Accordion("Advanced settings", open=False):
                height = gr.Slider(512, 2048, 1024, step=64, label="Height")
                width = gr.Slider(512, 2048, 1024, step=64, label="Width")
                num_inference_steps = gr.Slider(20, 50, 30, step=1, label="Number of Inference Steps")
                guidance_scale = gr.Slider(1, 20, 6, step=0.1, label="Guidance Scale")
                num_images_per_prompt = gr.Slider(1, 4, 1, step=1, label="Number of images per prompt")
                use_random_seed = gr.Checkbox(label="Use Random Seed", value=True)
                seed = gr.Number(label="Seed", value=0, precision=0)
                sampler = gr.Dropdown(label="Sampler", choices=list(samplers.keys()), value="DPM++ SDE Karras")
                clip_skip = gr.Slider(1, 4, 2, step=1, label="Clip skip")
            
            with gr.Accordion("Captioner and Enhancers", open=False):
                input_image = gr.Image(label="Input Image for Florence-2 Captioner")
                use_florence2 = gr.Checkbox(label="Use Florence-2 Captioner", value=False)
                use_medium_enhancer = gr.Checkbox(label="Use Medium Prompt Enhancer", value=False)
                use_long_enhancer = gr.Checkbox(label="Use Long Prompt Enhancer", value=False)
            
            with gr.Accordion("Prefix and Suffix Settings", open=False):
                use_positive_prefix = gr.Checkbox(
                    label="Use Positive Prefix", 
                    value=True, 
                    info=f"Prefix: {DEFAULT_POSITIVE_PREFIX}"
                )
                use_positive_suffix = gr.Checkbox(
                    label="Use Positive Suffix", 
                    value=True, 
                    info=f"Suffix: {DEFAULT_POSITIVE_SUFFIX}"
                )
                use_negative_prefix = gr.Checkbox(
                    label="Use Negative Prefix", 
                    value=True, 
                    info=f"Prefix: {DEFAULT_NEGATIVE_PREFIX}"
                )
                use_negative_suffix = gr.Checkbox(
                    label="Use Negative Suffix", 
                    value=True, 
                    info=f"Suffix: {DEFAULT_NEGATIVE_SUFFIX}"
                )
            
            generate_btn = gr.Button("Generate Image")

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
            seed_used = gr.Number(label="Seed Used")
            full_positive_prompt_used = gr.Textbox(label="Full Positive Prompt Used")
            full_negative_prompt_used = gr.Textbox(label="Full Negative Prompt Used")

    generate_btn.click(
        fn=generate_image,
        inputs=[
            positive_prompt, negative_prompt, height, width, num_inference_steps,
            guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler,
            clip_skip, use_florence2, use_medium_enhancer, use_long_enhancer,
            use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix,
            input_image
        ],
        outputs=[output_gallery, seed_used, full_positive_prompt_used, full_negative_prompt_used]
    )

demo.launch(debug=True)