File size: 16,891 Bytes
c2e96d2
 
 
 
 
 
4b287ff
 
 
 
 
 
 
 
 
 
eeb4af6
c2e96d2
 
461d979
c2e96d2
4d122d3
 
c2e96d2
461d979
c2e96d2
 
 
4d122d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc62600
 
4d122d3
c2e96d2
b151eb9
ee2bdc7
509539f
c2e96d2
 
b151eb9
 
509539f
c2e96d2
b151eb9
 
 
c2e96d2
 
 
 
b151eb9
 
 
 
 
 
 
509539f
 
 
 
 
 
 
b151eb9
 
 
509539f
c2e96d2
b151eb9
 
509539f
eeb4af6
c2e96d2
 
5aa2dd1
44b4617
4b287ff
 
6a629af
4b287ff
 
 
 
 
c2e96d2
 
d21e60d
 
6587268
 
c2e96d2
 
 
 
 
 
 
 
 
 
b9f8924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e5583
 
b9f8924
 
4d122d3
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d122d3
18fc70d
 
 
 
 
 
e5ccbba
4d122d3
b9f8924
4d122d3
b9f8924
4d122d3
 
 
c2e96d2
b151eb9
00ef2fe
 
 
4d122d3
00ef2fe
 
b151eb9
509539f
 
ee2bdc7
509539f
 
 
b151eb9
c2e96d2
 
 
 
 
 
 
 
 
 
 
00ef2fe
 
c2e96d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ef2fe
c2e96d2
00ef2fe
 
 
c2e96d2
 
00ef2fe
 
 
 
 
 
c2e96d2
 
4d122d3
c2e96d2
 
 
 
 
 
 
 
 
4d122d3
 
05c7809
4d122d3
05c7809
 
 
 
 
4d122d3
 
 
 
05c7809
4d122d3
c2e96d2
 
05c7809
 
00ef2fe
c2e96d2
 
 
 
7452dff
c2e96d2
7452dff
ee2bdc7
7452dff
 
 
 
853dea9
 
 
c2e96d2
 
 
01cb633
c2e96d2
b151eb9
ee2bdc7
7e89d2e
 
c2e96d2
 
 
 
 
 
509539f
c2e96d2
 
 
 
e0f49e7
c2e96d2
 
 
 
 
 
 
93279b2
4d122d3
 
 
 
93279b2
c2e96d2
93279b2
00ef2fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e96d2
 
 
 
00ef2fe
 
c2e96d2
 
 
 
b151eb9
c2e96d2
 
00ef2fe
 
4d122d3
00ef2fe
c2e96d2
00ef2fe
c2e96d2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import spaces
import os
import torch
import random
from huggingface_hub import snapshot_download
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from diffusers import (
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSDEScheduler,
    HeunDiscreteScheduler,
    DDIMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UniPCMultistepScheduler,
)
from diffusers.models.attention_processor import AttnProcessor2_0
import gradio as gr
from PIL import Image
import numpy as np
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
import requests
from RealESRGAN import RealESRGAN


import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

# Download ESRGAN models
download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth")
download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth")

# Download the model files
ckpt_dir_pony = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl")
ckpt_dir_cyber = snapshot_download(repo_id="John6666/cyberrealistic-pony-v63-sdxl")
ckpt_dir_stallion = snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")

# Load the models
vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16)
vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16)
vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16)

pipe_pony = StableDiffusionXLPipeline.from_pretrained(
    ckpt_dir_pony,
    vae=vae_pony,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16"
)
pipe_cyber = StableDiffusionXLPipeline.from_pretrained(
    ckpt_dir_cyber,
    vae=vae_cyber,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16"
)
pipe_stallion = StableDiffusionXLPipeline.from_pretrained(
    ckpt_dir_stallion,
    vae=vae_stallion,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16"
)

pipe_pony = pipe_pony.to("cuda")
pipe_cyber = pipe_cyber.to("cuda")
pipe_stallion = pipe_stallion.to("cuda")

pipe_pony.unet.set_attn_processor(AttnProcessor2_0())
pipe_cyber.unet.set_attn_processor(AttnProcessor2_0())
pipe_stallion.unet.set_attn_processor(AttnProcessor2_0())

# Define samplers
samplers = {
    "Euler a": EulerAncestralDiscreteScheduler.from_config(pipe_pony.scheduler.config),
    "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe_pony.scheduler.config, use_karras_sigmas=True),
    "Heun": HeunDiscreteScheduler.from_config(pipe_pony.scheduler.config),
    # New samplers
    "DPM++ 2M SDE Karras": DPMSolverMultistepScheduler.from_config(pipe_pony.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"),
    "DPM++ 2M": DPMSolverMultistepScheduler.from_config(pipe_pony.scheduler.config),
    "DDIM": DDIMScheduler.from_config(pipe_pony.scheduler.config),
    "LMS": LMSDiscreteScheduler.from_config(pipe_pony.scheduler.config),
    "PNDM": PNDMScheduler.from_config(pipe_pony.scheduler.config),
    "UniPC": UniPCMultistepScheduler.from_config(pipe_pony.scheduler.config),
}

DEFAULT_POSITIVE_PREFIX = "Score_9 score_8_up score_7_up BREAK"
DEFAULT_POSITIVE_SUFFIX = "(masterpiece) very_aesthetic detailed_face cinematic footage"
DEFAULT_NEGATIVE_PREFIX = "Score_1 score_2 score _3 text low_res"
DEFAULT_NEGATIVE_SUFFIX = "Nsfw oversaturated crappy_art low_quality blurry bad_anatomy extra_digits fewer_digits simple_background very_displeasing watermark signature"

# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

class LazyRealESRGAN:
    def __init__(self, device, scale):
        self.device = device
        self.scale = scale
        self.model = None

    def load_model(self):
        if self.model is None:
            self.model = RealESRGAN(self.device, scale=self.scale)
            self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)

    def predict(self, img):
        self.load_model()
        return self.model.predict(img)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)

# Florence caption function
def florence_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<DETAILED_CAPTION>"]

# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
    if model_choice == "Medium":
        result = enhancer_medium("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    else:  # Long
        result = enhancer_long("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    
    return enhanced_text

def upscale_image(image, scale):
    # Ensure image is a PIL Image object
    if not isinstance(image, Image.Image):
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        else:
            raise ValueError("Input must be a PIL Image or a numpy array")

    if scale == 2:
        return lazy_realesrgan_x2.predict(image)
    elif scale == 4:
        return lazy_realesrgan_x4.predict(image)
    else:
        return image

@spaces.GPU(duration=120)
def generate_image(model_choice, additional_positive_prompt, additional_negative_prompt, height, width, num_inference_steps,
                   guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler, clip_skip, 
                   use_florence2, use_medium_enhancer, use_long_enhancer,
                   use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix,
                   use_upscaler, upscale_factor,
                   input_image=None, progress=gr.Progress(track_tqdm=True)):
    
    # Select the appropriate pipe based on the model choice
    if model_choice == "Pony Realism v21":
        pipe = pipe_pony
    elif model_choice == "Cyber Realistic Pony v63":
        pipe = pipe_cyber
    else:  # "Stallion Dreams Pony Realistic v1"
        pipe = pipe_stallion
    
    if use_random_seed:
        seed = random.randint(0, 2**32 - 1)
    else:
        seed = int(seed)  # Ensure seed is an integer
    
    # Set the scheduler based on the selected sampler
    pipe.scheduler = samplers[sampler]
    
    # Set clip skip
    pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
    
    # Start with the default positive prompt prefix if enabled
    full_positive_prompt = DEFAULT_POSITIVE_PREFIX + ", " if use_positive_prefix else ""

    # Add Florence-2 caption if enabled and image is provided
    if use_florence2 and input_image is not None:
        florence2_caption = florence_caption(input_image)
        florence2_caption = florence2_caption.lower().replace('.', ',')
        additional_positive_prompt = f"{florence2_caption}, {additional_positive_prompt}" if additional_positive_prompt else florence2_caption

    # Enhance only the additional positive prompt if enhancers are enabled
    if additional_positive_prompt:
        enhanced_prompt = additional_positive_prompt
        if use_medium_enhancer:
            medium_enhanced = enhance_prompt(enhanced_prompt, "Medium")
            medium_enhanced = medium_enhanced.lower().replace('.', ',')
            enhanced_prompt = f"{enhanced_prompt}, {medium_enhanced}"
        if use_long_enhancer:
            long_enhanced = enhance_prompt(enhanced_prompt, "Long")
            long_enhanced = long_enhanced.lower().replace('.', ',')
            enhanced_prompt = f"{enhanced_prompt}, {long_enhanced}"
        full_positive_prompt += enhanced_prompt

    # Add the default positive suffix if enabled
    if use_positive_suffix:
        full_positive_prompt += f", {DEFAULT_POSITIVE_SUFFIX}"
    
    # Combine default negative prompt with additional negative prompt
    full_negative_prompt = ""
    if use_negative_prefix:
        full_negative_prompt += f"{DEFAULT_NEGATIVE_PREFIX}, "
    full_negative_prompt += additional_negative_prompt if additional_negative_prompt else ""
    if use_negative_suffix:
        full_negative_prompt += f", {DEFAULT_NEGATIVE_SUFFIX}"
    
    try:
        images = pipe(
            prompt=full_positive_prompt,
            negative_prompt=full_negative_prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            generator=torch.Generator(pipe.device).manual_seed(seed)
        ).images

        if use_upscaler:
            print("Upscaling images")
            upscaled_images = []
            for i, img in enumerate(images):
                print(f"Upscaling image {i+1}")
                if not isinstance(img, Image.Image):
                    print(f"Converting image {i+1} to PIL Image")
                    img = Image.fromarray(np.uint8(img))
                upscaled_img = upscale_image(img, upscale_factor)
                upscaled_images.append(upscaled_img)
            images = upscaled_images

        print("Returning results")
        return images, seed, full_positive_prompt, full_negative_prompt
    except Exception as e:
        print(f"Error during image generation: {str(e)}")
        import traceback
        traceback.print_exc()
        return None, seed, full_positive_prompt, full_negative_prompt

# Gradio interface
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
    gr.HTML("""
    <h1 align="center">Pony Realism / Cyber Realism / Stallion Dreams</h1>
    <p align="center">
    <a href="https://huggingface.co/John6666/pony-realism-v21main-sdxl/" target="_blank">[Pony Realism]</a>
    <a href="https://huggingface.co/John6666/cyberrealistic-pony-v63-sdxl" target="_blank">[Cyberrealistic Pony]</a>
    <a href="https://huggingface.co/John6666/stallion-dreams-pony-realistic-v1-sdxl" target="_blank">[Stallion Dreams]</a><br>
    <a href="https://civitai.com/models/372465/pony-realism" target="_blank">[Pony Realism civitai]</a>
    <a href="https://civitai.com/models/443821?modelVersionId=680915" target="_blank">[Cyberrealistic Pony civitai]</a>
    <a href="https://civitai.com/models/628846/stallion-dreams-pony-realistic" target="_blank">[Stallion Dreams civitai]</a>
    <a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
    <a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
    <a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a>
    </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                    ["Pony Realism v21", "Cyber Realistic Pony v63", "Stallion Dreams Pony Realistic v1"], 
                    label="Model Choice", 
                    value="Pony Realism v21")
            positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Add your positive prompt here")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Add your negative prompt here")
            
            with gr.Accordion("Advanced settings", open=False):
                height = gr.Slider(512, 2048, 1024, step=64, label="Height")
                width = gr.Slider(512, 2048, 1024, step=64, label="Width")
                num_inference_steps = gr.Slider(20, 100, 30, step=1, label="Number of Inference Steps")
                guidance_scale = gr.Slider(1, 20, 6, step=0.1, label="Guidance Scale")
                num_images_per_prompt = gr.Slider(1, 4, 1, step=1, label="Number of images per prompt")
                use_random_seed = gr.Checkbox(label="Use Random Seed", value=True)
                seed = gr.Number(label="Seed", value=0, precision=0)
                sampler = gr.Dropdown(label="Sampler", choices=list(samplers.keys()), value="Euler a")
                clip_skip = gr.Slider(1, 4, 2, step=1, label="Clip skip")
            
            with gr.Accordion("Captioner and Enhancers", open=False):
                input_image = gr.Image(label="Input Image for Florence-2 Captioner")
                use_florence2 = gr.Checkbox(label="Use Florence-2 Captioner", value=False)
                use_medium_enhancer = gr.Checkbox(label="Use Medium Prompt Enhancer", value=False)
                use_long_enhancer = gr.Checkbox(label="Use Long Prompt Enhancer", value=False)

            with gr.Accordion("Upscaler Settings", open=False):
                use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
                upscale_factor = gr.Radio(label="Upscale Factor", choices=[2, 4], value=2)

            generate_btn = gr.Button("Generate Image")
            
            with gr.Accordion("Prefix and Suffix Settings", open=True):
                use_positive_prefix = gr.Checkbox(
                    label="Use Positive Prefix", 
                    value=True, 
                    info=f"Prefix: {DEFAULT_POSITIVE_PREFIX}"
                )
                use_positive_suffix = gr.Checkbox(
                    label="Use Positive Suffix", 
                    value=True, 
                    info=f"Suffix: {DEFAULT_POSITIVE_SUFFIX}"
                )
                use_negative_prefix = gr.Checkbox(
                    label="Use Negative Prefix", 
                    value=True, 
                    info=f"Prefix: {DEFAULT_NEGATIVE_PREFIX}"
                )
                use_negative_suffix = gr.Checkbox(
                    label="Use Negative Suffix", 
                    value=True, 
                    info=f"Suffix: {DEFAULT_NEGATIVE_SUFFIX}"
                )

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
            seed_used = gr.Number(label="Seed Used")
            full_positive_prompt_used = gr.Textbox(label="Full Positive Prompt Used")
            full_negative_prompt_used = gr.Textbox(label="Full Negative Prompt Used")

    generate_btn.click(
        fn=generate_image,
        inputs=[
            model_choice,  # Add this new input
            positive_prompt, negative_prompt, height, width, num_inference_steps,
            guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler,
            clip_skip, use_florence2, use_medium_enhancer, use_long_enhancer,
            use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix,
            use_upscaler, upscale_factor,
            input_image
        ],
        outputs=[output_gallery, seed_used, full_positive_prompt_used, full_negative_prompt_used]
    )

demo.launch(debug=True)