File size: 25,439 Bytes
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68e7402
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
 
41ba494
19f91d8
33c298f
 
41ba494
1bc3235
 
41ba494
 
1bc3235
 
 
 
19f91d8
1bc3235
 
4a0f09c
1bc3235
 
 
 
 
 
 
 
19f91d8
1bc3235
68e7402
 
 
1bc3235
19f91d8
1bc3235
68e7402
 
 
 
1bc3235
 
 
 
 
 
 
 
 
 
 
9d4c959
1bc3235
 
 
 
 
 
 
 
 
 
 
41ba494
1bc3235
33c298f
1bc3235
33c298f
1bc3235
 
41ba494
1bc3235
 
 
 
 
 
 
 
33c298f
9d4c959
41ba494
1bc3235
 
 
 
4a0f09c
1bc3235
33c298f
 
1bc3235
 
19f91d8
4a0f09c
1bc3235
4a0f09c
1bc3235
 
 
 
19f91d8
4a0f09c
1bc3235
41ba494
7bd2a95
1bc3235
 
 
 
 
33c298f
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4c959
 
 
1bc3235
9d4c959
 
41ba494
 
33c298f
 
 
1bc3235
 
 
 
 
 
33c298f
 
 
1bc3235
 
 
 
 
41ba494
 
1bc3235
 
 
 
 
 
 
 
33c298f
1bc3235
 
41ba494
1bc3235
 
33c298f
1bc3235
 
33c298f
1bc3235
 
 
 
 
41ba494
1bc3235
 
33c298f
1bc3235
 
41ba494
1bc3235
 
68e7402
1bc3235
 
f46eaef
4a0f09c
33c298f
41ba494
 
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0f09c
1bc3235
 
 
 
 
 
 
 
 
4a0f09c
1bc3235
 
 
 
 
9d4c959
1bc3235
 
 
4a0f09c
1bc3235
 
 
4a0f09c
1bc3235
 
 
 
 
41ba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68e7402
41ba494
 
 
 
 
 
1bc3235
41ba494
 
 
 
1bc3235
 
41ba494
1bc3235
68e7402
1bc3235
 
68e7402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0f09c
1bc3235
 
 
41ba494
1bc3235
41ba494
1bc3235
 
 
 
41ba494
 
 
 
 
 
1bc3235
41ba494
 
1bc3235
 
 
 
 
41ba494
1bc3235
 
 
 
 
 
 
4a0f09c
1bc3235
 
 
 
 
 
41ba494
1bc3235
41ba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
 
 
41ba494
33c298f
 
 
41ba494
33c298f
41ba494
33c298f
 
41ba494
 
 
 
33c298f
 
 
1bc3235
 
33c298f
41ba494
 
1bc3235
 
41ba494
 
 
 
 
7bd2a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba494
 
1bc3235
41ba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
41ba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
 
 
 
41ba494
 
 
 
 
33c298f
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
4a0f09c
 
 
41ba494
4a0f09c
 
41ba494
4a0f09c
 
33c298f
1bc3235
 
 
4a0f09c
1bc3235
4a0f09c
1bc3235
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# %%
# -*- coding: utf-8 -*-
"""

Spyder Editor



This is a temporary script file.

"""



from numpy import arange
import xarray as xr
import highspy
from linopy import Model, EQUAL
import pandas as pd
import plotly.express as px
import streamlit as st
import sourced as src
import numpy as np
import tempfile

## Setting
write_pickle_from_standard_excel = True


st.set_page_config(layout="wide")
# you can create columns to better manage the flow of your page
# this command makes 3 columns of equal width
col1, col2, col3, col4 = st.columns(4)
col1.header("Data Input")
col4.header("Download Results")

# Color dictionary for figures
color_dict = {'Biomasse': 'lightgreen',
              'Braunkohle': 'red',
              'Erdgas': 'orange',
              'Steinkohle': 'darkgrey',
              'Erdöl': 'brown',
              'Laufwasser': 'aquamarine',
              'Kernenergie': 'cyan',
              'PV': 'yellow',
              'WindOff': 'darkblue',
              'WindOn': 'blue',
              'Batteriespeicher': 'purple'}

# %%
with col1:
    with open('Input_Jahr_2021.xlsx', 'rb') as f:
        st.download_button('Download Excel Vorlage', f, file_name='Input_Jahr_2021.xlsx')  # Defaults to 'application/octet-stream'

#url_excel = r'Input_Jahr_2021.xlsx'
    url_excel = st.file_uploader(label = 'Excel Datei hochladen')


if url_excel == None:
    if write_pickle_from_standard_excel:
        url_excel = r'Input_Jahr_2021.xlsx'
        sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag= True)
    sets_dict, params_dict = src.load_from_pickle()
    with col4:
        st.write('Lauf mit Standarddaten')
else:
    # sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False)
    sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag = True)

    with col4:
        st.write('Lauf mit Nutzerdaten')

# Debugging output to verify that sets_dict is defined
# st.write(f"sets_dict: {sets_dict}")
# st.write(f"params_dict: {params_dict}")

# # %%

def timstep_aggregate(time_steps_aggregate, xr ):
    return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate])

#s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)



# %%
#sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True)

# %%



#sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False)


# Unpack sets_dict into the workspace
t = sets_dict['t']
t_original = sets_dict['t']
i = sets_dict['i']
iSto = sets_dict['iSto']
iConv = sets_dict['iConv']
# iPtG = sets_dict['iPtG']
iRes = sets_dict['iRes']
# iHyRes = sets_dict['iHyRes']

# Unpack params_dict into the workspace
l_co2 = params_dict['l_co2']
p_co2 = params_dict['p_co2']

eff_i = params_dict['eff_i']
life_i = params_dict['life_i']
c_fuel_i = params_dict['c_fuel_i']
c_other_i = params_dict['c_other_i']
c_inv_i = params_dict['c_inv_i']
co2_factor_i = params_dict['co2_factor_i']
c_var_i = params_dict['c_var_i']
K_0_i = params_dict['K_0_i']
e2p_iSto = params_dict['e2p_iSto']

# Sliders and input boxes for parameters
with col2:
    # Slider for CO2 limit [mio. t]
    l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 Limit [Mio. t]", step=10)

    # # Slider for H2 price / usevalue [€/MWH_th]
    # price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Wasserstoffpreis [€/MWh]", step=10)

    for i_idx in c_fuel_i.get_index('i'):
            if i_idx in ['Braunkohle']:
                c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10)

    dt = st.number_input(label="Zeitliche Auflösung [h]", min_value=1, max_value=len(t), value=6, help="Geben Sie nur ganze Zahlen zwischen 1 und 8760 (oder 8784 für Schaltjahre) ein.")

with col3:
    # Slider for CO2 limit [mio. t]
    for i_idx in c_fuel_i.get_index('i'):
            if i_idx in ['Steinkohle', 'Erdöl','Erdgas']:
                c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10)

    # technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Biomasse','Laufwasser','Kernenergie','Braunkohle','Steinkohle','Erdöl','Erdgas','WindOff','WindOn','PV','Batteriespeicher'])
    technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Kernenergie','Braunkohle','Steinkohle','Erdgas', 'Erdöl','Biomasse','Laufwasser','WindOn','WindOff','PV','Batteriespeicher'])
    technologies_no_invest = [x for x in i if x not in technologies_invest]

# Aggregate time series
D_t = timstep_aggregate(dt,params_dict['D_t'])
s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
# h_t = timstep_aggregate(dt,params_dict['h_t'])
t = D_t.get_index('t')
partial_year_factor = (8760/len(t))/dt



#time_steps_aggregate = 6
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
price_co2 = 0

# Aggregate time series
#D_t = timstep_aggregate(dt,params_dict['D_t'])
#s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
#h_t = timstep_aggregate(dt,params_dict['h_t'])
#t = D_t.get_index('t')
#partial_year_factor = (8760/len(t))/dt

#technologies_no_invest = st.multiselect(label='Technology invest', options=i)
#technologies_no_invest = ['Electrolyzer','Biomass','RoR','Hydro Water Reservoir','Nuclear']
# %%
### Variables
m = Model()

C_tot = m.add_variables(name = 'C_tot')     # Total costs
C_op = m.add_variables(name = 'C_op', lower = 0)       # Operational costs
C_inv = m.add_variables(name = 'C_inv', lower = 0)     # Investment costs

K = m.add_variables(coords = [i], name = 'K', lower = 0)          # Endogenous capacity
y = m.add_variables(coords = [t,i], name = 'y', lower = 0)          # Electricity production --> für Elektrolyseure ausschließen
y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0)    # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen
l = m.add_variables(coords = [t,i], name = 'l', lower = 0)          # Storage filling level
w = m.add_variables(coords = [t], name = 'w', lower = 0)          
y_curt = m.add_variables(coords = [t,i], name = 'y_curt', lower = 0) # RES curtailment
# y_h2 = m.add_variables(coords = [t,i], name = 'y_h2', lower = 0)

## Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)

## Costs terms for objective function
# Operational costs (minus revenue for produced hydrogen)
# C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt - (y_h2.sel(i = iPtG) * price_h2).sum() * dt  == C_op, name = 'C_op_sum')
C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt  == C_op, name = 'C_op_sum')

# Investment costs
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')

## Load serving
loadserve_t = m.add_constraints((((y ).sum(dims = 'i') - y_ch.sum(dims = 'i')) * dt  == D_t.sel(t = t) * dt), name =  'load')
# loadserve_t = m.add_constraints((((y ).sum(dims = 'i') ) * dt  == D_t.sel(t = t) * dt), name =  'load')

## Maximum capacity limit
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap')

## Maximum capacity limit
maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest')

## Prevent power production by PtG
# no_power_prod_iPtG_t = m.add_constraints((y.sel(i = iPtG) <= 0), name = 'prevent_ptg_prod')

## Maximum storage charging and discharging
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) - y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name =  'max_cha')

## Maximum electrolyzer capacity
# ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG) <= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg')

## PtG H2 production
# h2_prod_iPtG_t = m.add_constraints(y_ch.sel(i = iPtG) * eff_i.sel(i = iPtG) == y_h2.sel(i = iPtG), name = 'ptg_h2_prod')

## Infeed of renewables
infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) + y_curt.sel(i = iRes) == s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name =  'infeed')

## Maximum filling level restriction storage power plant
maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling')

## Filling level restriction hydro reservoir
# filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro')

## Filling level restriction other storages
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) / eff_i.sel(i = iSto)) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')

## CO2 limit
# l_co2 = 50
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000 , name = 'CO2_limit')

## set run-of-river power plants capacity limit to 5 GW
RoR_cap = m.add_constraints(K.sel(i = 'Laufwasser') <= 5000, name = 'RoR_cap')
Biomass_cap = m.add_constraints(K.sel(i = 'Biomasse') <= 9000, name = 'Biomass_cap')
# Nuclear_cap = m.add_constraints(K.sel(i = 'Kernenergie') <= 3000, name = 'Kernenergie_cap')
# nuclear_production_constraint = m.add_constraints(y.sel(i='Kernenergie') == K.sel(i='Kernenergie'), name='Nuclear_Production_Capacity')

# %%
m.solve(solver_name = 'highs')

st.markdown("---")

colb1, colb2 = st.columns(2)

# %%
#c_var_i.to_dataframe(name='VarCosts')
# %%
# Installed Cap
# Assuming df_excel has columns 'All' and 'Capacities'

fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
                y='i', x='K', orientation='h', title='Installierte Kapazitäten insgesamt [MW]', color='i')

#fig

# %%
total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
total_costs_rounded = round(total_costs/1e9, 2)
df_total_costs = pd.DataFrame({'Total costs':[total_costs]})

with colb1:
    st.write('Gesamtkosten: ' + str(total_costs_rounded) + ' Mrd. €')

# %%
#df_Co2_price = pd.DataFrame({'CO2_Price: ':[float(m.constraints['CO2_limit'].dual.values) * (-1)]})
CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
CO2_price_rounded = round(CO2_price, 2)
df_CO2_price = pd.DataFrame({'CO2 price':[CO2_price]})

with colb2:
    #st.write(str(df_Co2_price))
    st.write('CO2 Preis: ' + str(CO2_price_rounded) + ' €/t')

# %%
df_new_capacities = m.solution['K'].to_dataframe().reset_index()
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='Neu installierte Kapazitäten [MW]', color='i', color_discrete_map=color_dict)

with colb1:
    fig

# %%
D_t_sorted = D_t.sortby(D_t, ascending = False).to_dataframe().reset_index()
# NaN entries to the end
D_t_sorted = D_t_sorted.sort_values(by='Nachfrage', ascending=False).reset_index(drop=True)
# expand df_price to the size of t
D_t_sorted = D_t_sorted.loc[D_t_sorted.index.repeat(dt)].reset_index(drop=True)
x_loadcurve = np.arange(1, D_t_sorted['Nachfrage'].size + 1)

# residual load curve
df_production_res = m.solution['y'].sel(i = iRes).to_dataframe().reset_index()
# sum up over t
df_production_res_sum = df_production_res.groupby('t')['y'].sum().reset_index()
# D_t into dateframe
D_t_df = D_t.to_dataframe().reset_index()
df_residual = D_t_df['Nachfrage'] - df_production_res_sum['y']
# sort
df_residual = df_residual.sort_values(ascending=False).reset_index(drop=True)
df_residual = df_residual.loc[df_residual.index.repeat(dt)].reset_index(drop=True)

df_combined = pd.DataFrame({
    'x': np.concatenate([x_loadcurve, x_loadcurve]),
    'y': np.concatenate([D_t_sorted['Nachfrage'], df_residual]),
    'label': ['Nachfrage'] * len(x_loadcurve) + ['Residual Load'] * len(x_loadcurve)
})

# Create the integrated plot using Plotly Express
fig = px.line(df_combined, x='x', y='y', color='label', title='Lastdauerlinie [MW]',
              labels={"x": "Stunden im Jahr", "y": "Leistung [MW]"})

# Specific updates for each trace
fig.for_each_trace(
    lambda trace: trace.update(line=dict(color='blue')) if trace.name == 'Nachfrage' else trace.update(line=dict(color='red', dash='dash'))
)

with colb2:
    fig.update_layout(
    legend_title='Legende'
    )
    fig

# fig.show()
# %%
# calculate full load hours
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index()
df_capacity = m.solution['K'].sel(i = i_with_capacity).to_dataframe().reset_index()
df_production_sum = (df_production.groupby('i')['y'].sum() * dt).round(0).reset_index()
# reorder rows according to i_with_capacity
df_production_sum = df_production_sum.set_index('i').loc[i_with_capacity].reset_index()
# df_production_sum['i'] = pd.Categorical(df_production_sum['i'], categories=desired_order, ordered=True)

df_fullload = df_production_sum['y']/df_capacity['K']
# to dataframe
df_fullload = df_fullload.to_frame()
# rename column
df_fullload.columns = ['fullload']
df_fullload['i'] = df_production_sum['i']
# change order of columns
df_fullload = df_fullload[['i', 'fullload']]
fig = px.bar(df_fullload, y='i', x=df_fullload['fullload'], orientation='h', title='Volllaststunden [h]', color='i', color_discrete_map=color_dict)
with colb1:
    fig
# fig.show()


# %%
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t',  title='Stromproduktion Lastgang [MW]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))

with colb1:
    fig
# fig.show()


# %%
df_price = m.constraints['load'].dual.to_dataframe().reset_index()
# expand df_price to the size of t
df_price = df_price.loc[df_price.index.repeat(dt)].reset_index(drop=True)
# sort prices descending
df_sorted_price = df_price["dual"].sort_values(ascending=False).reset_index(drop=True)
# generate x-axis for price duration curve
x_price = np.arange(1, df_sorted_price.size + 1)

fig = px.line(y=df_sorted_price, x=x_price,  title='Preisdauerlinie [€/MWh]', labels={"x": "Stunden im Jahr"},range_y=[0,350])
with colb2:
    fig


# %%

fig = px.line(df_price, y='dual', x='t',  title='Strompreis [€/MWh]', range_y=[0,350])
with colb2:
    fig

# %%
    
# curtailment
df_curtailment = m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index()
fig = px.area(m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index(), y='y_curt', x='t',  title='Abregelung [MWh]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))

with colb1:
    fig    


# %%
df_charging = m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index()
fig = px.area(m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index(), y='y_ch', x='t',  title='Speicherbeladung [MWh]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))

with colb2:
    fig

# %% 

# df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index() 
# df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)

# fig = px.line(df_contr_marg, y='dual', x='t',title='Deckungsbeitrag [€]', color='i', range_y=[0,350], color_discrete_map=color_dict)
# with colb2:
#     fig

# %%
# generate dataframe steplength = 1 same size as t
# x = np.arange(1, t.size + 1)
x = np.arange(1,t.size)
df_production_pivot = df_production.pivot(index='t', columns='i', values='y')
# sort columns according to i_with_capacity
df_production_pivot = df_production_pivot[i_with_capacity]
df_efficiency = eff_i.sel(i = i_with_capacity)
co2_factor_i_with_capacity = co2_factor_i.sel(i = i_with_capacity)
# colour_dict = {i: color_dict[i] for i in i_with_capacity}
color_dict_with_capacity = {i: color_dict[i] for i in i_with_capacity}
desired_order = i_with_capacity.tolist()
# multiply df_production with co2 factor
df_production_emissions = df_production_pivot/df_efficiency * co2_factor_i_with_capacity*dt
# unpivot df_production_emissions, sorting by datetime
df_production_emissions_unpivot = df_production_emissions.reset_index().melt(id_vars='t', var_name='i', value_name='y')
df_production_emissions_unpivot['i'] = pd.Categorical(df_production_emissions_unpivot['i'], categories=desired_order, ordered=True)
df_production_emissions_unpivot = df_production_emissions_unpivot.sort_values(by=['t', 'i'])
# rearrange rows according to i_with_capacity


# generate area plot of df_production_emissions_unpivot over t 
fig = px.area(df_production_emissions_unpivot, y='y', x='t',  title='Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))

with colb1:
    fig  

# %%
# Sum up second row of df_production_emissions
df_production_emissions_sum = df_production_emissions.copy()
df_production_emissions_sum['total'] = df_production_emissions_sum.sum(axis=1)
# sort by total generation
df_production_emissions_sum = df_production_emissions_sum.sort_values(by='total', ascending=True)
# generate new dataframe where all columns but dateTime are cumulated
df_production_emissions_sum_cumsum = df_production_emissions_sum.cumsum(axis=0)
# remove columns which are completely zero
df_production_emissions_sum_cumsum = df_production_emissions_sum_cumsum.loc[:, (df_production_emissions_sum_cumsum != 0).any(axis=0)]
# unpivot df_production_emissions_sum_cumsum	
df_production_emissions_sum_unpivot = df_production_emissions_sum_cumsum.reset_index().melt(id_vars='t', var_name='i', value_name='y')
# keep i = i_with_capacity
df_production_emissions_sum_unpivot = df_production_emissions_sum_unpivot[df_production_emissions_sum_unpivot['i'].isin(i_with_capacity)].reset_index(drop=True)
# set values 0= NaN
df_production_emissions_sum_unpivot['y'] = df_production_emissions_sum_unpivot['y'].replace(0, np.nan)

# generate layered area plot of unpivoted_df_sorted_cap over num
fig = px.area(df_production_emissions_sum_unpivot, y='y', x='t',  title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity)

# fig = px.area(unpivoted_df_sorted_cap, y='cumsum', x='t',  title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity)

# Update traces
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))

# fig.show()
with colb2:
    fig  

# %% 
# plot investment costs
# c-inv_i to dataframe
if c_inv_i.name is None:
    c_inv_i.name = 'c_inv_i'
c_inv_i_df = c_inv_i.to_dataframe().reset_index()
# multiply c_inv_i_df with K
df_invest_costs = df_new_capacities['K']* c_inv_i
df_invest_costs = df_invest_costs.to_frame()
df_invest_costs.columns = ['K']
df_invest_costs['i'] = df_new_capacities['i']
fig = px.bar(df_invest_costs, y='i', x='K', orientation='h', title='Investitionskosten [Mrd. €]', color='i', color_discrete_map=color_dict)
# fig.show()
with colb1:
    fig  


# %% 
df_production_all = m.solution['y'].sel(i = i).to_dataframe().reset_index()
# Deckungsbeitrag = Erlöse - Kosten
df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
# # contr_margin for i_with_capacity
# df_contr_marg = df_contr_marg[df_contr_marg['i'].isin(i_with_capacity)]. reset_index(drop=True)
# # multiply
df_merged = pd.merge(df_production_all, df_contr_marg, on=['t', 'i'])
# Perform the multiplication
df_merged['y_new'] = df_merged['y'] * df_merged['dual']
df_merged = df_merged[['t', 'i', 'y_new']]
df_contr_marg_sum = df_merged.groupby('i')['y_new'].sum().reset_index()

df_production_res = m.solution['y'].sel(i = iRes).to_dataframe().reset_index()
df_price_res = m.constraints['load'].dual.to_dataframe().reset_index()
# multiply with df_price_res
df_merged_res = pd.merge(df_production_res, df_price_res, on='t')
df_merged_res['multiplied_value'] = df_merged_res['y'] * df_merged_res['dual']
df_merged_res = df_merged_res[['t', 'i', 'multiplied_value']]
df_contr_marg_res = df_merged_res.groupby('i')['multiplied_value'].sum().reset_index()
df_contr_marg_res['multiplied_value'] = df_contr_marg_res['multiplied_value'] * -dt

df_contr_marg_sum = pd.merge(df_contr_marg_sum, df_contr_marg_res, on='i', how='left')
df_contr_marg_sum['y_new'] = df_contr_marg_sum['multiplied_value'].combine_first(df_contr_marg_sum['y_new'])
df_contr_marg_sum = df_contr_marg_sum.drop(columns=['multiplied_value'])
df_contr_marg_sum['y'] = df_contr_marg_sum['y_new']*(-1)
# rearrange rows according to i
df_contr_marg_sum = df_contr_marg_sum.set_index('i').loc[i].reset_index()
# # # barplot
fig = px.bar(df_contr_marg_sum, y='i', x='y', orientation='h', title='Deckungsbeitrag [Mrd. €]', color='i', color_discrete_map=color_dict)
# fig.show()
with colb2:
    fig  

# %%
# #Add pie chart of total production per technology type in GWh(divide by 1000)
# df_production_sum = (df_production.groupby('i')['y'].sum() * dt / 1000 ).round(0).sort_values(ascending=False).reset_index()

# fig = px.pie(df_production_sum, names="i", values='y', title='Gesamtproduktion [GWh] als Kuchendiagramm',
#              color='i', color_discrete_map=color_dict)

# with colb2:
#     fig

# %%
# # %%
# df_h2_prod = m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index()
# fig = px.area(m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index(), y='y_h2', x='t',  title='Produktion Wasserstoff [MWh_th]', color='i', color_discrete_map=color_dict)
# fig.update_traces(line=dict(width=0))
# fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))

# with colb2:
#     fig


# %%
# #add pie chart which shows new capacities
# #round number of new capacities
# df_new_capacities_rounded = m.solution['K'].round(0).to_dataframe()
# #drop all technologies with K<= 0
# df_new_capacities_rounded = df_new_capacities_rounded[df_new_capacities_rounded["K"] > 0].reset_index() 

# total_k_sum = df_new_capacities_rounded["K"].sum()

# #df_new_capacities_rounded["percentage"] = df_new_capacities_rounded["K"].apply(lambda x: (x/total_k_sum)*100).abs().round(2)

# fig = px.pie(df_new_capacities_rounded, names='i', values='K', title='Neu installierte Kapazitäten [MW] als Kuchendiagramm',
#              color='i', color_discrete_map=color_dict)

# with colb1:
#     fig


# %%
((m.solution['y'] / eff_i) * co2_factor_i * dt).sum()
# %%

import pandas as pd
from io import BytesIO
#from pyxlsb import open_workbook as open_xlsb
import streamlit as st
import xlsxwriter
# %%
output = BytesIO()


# ## 


def disaggregate_df(df):
    

    if not "t" in list(df.columns):
        return df

    #df_repeated = df.iloc[idx_repeat,:].reset_index(drop = True).drop('t', axis = 1)
    df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)

    ## %%
    df_output = df.merge(df_t_all,on = 't').drop('t',axis = 1).rename({'t_all':'t'}, axis = 1)
    # last column to first column
    cols = list(df_output.columns)
    cols = [cols[-1]] + cols[:-1]
    df_output = df_output[cols]
    return df_output.sort_values('t')




# Create a Pandas Excel writer using XlsxWriter as the engine
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
    # Write each DataFrame to a different sheet
    disaggregate_df(df_total_costs).to_excel(writer, sheet_name='Gesamtkosten', index=False)
    disaggregate_df(df_CO2_price).to_excel(writer, sheet_name='CO2 Preis', index=False)
    disaggregate_df(df_price).to_excel(writer, sheet_name='Preise', index=False)
    # disaggregate_df(df_contr_marg).to_excel(writer, sheet_name='Deckungsbeiträge', index=False)
    disaggregate_df(df_new_capacities).to_excel(writer, sheet_name='Kapazitäten', index=False)
    disaggregate_df(df_production).to_excel(writer, sheet_name='Produktion', index=False)
    disaggregate_df(df_charging).to_excel(writer, sheet_name='Ladevorgänge', index=False)
    disaggregate_df(D_t.to_dataframe().reset_index()).to_excel(writer, sheet_name='Nachfrage', index=False)
    disaggregate_df(df_curtailment).to_excel(writer, sheet_name='Abregelung', index=False)
    # disaggregate_df(df_h2_prod).to_excel(writer, sheet_name='H2 produktion', index=False)

with col4:
    st.download_button(
        label="Download Excel Arbeitsmappe Ergebnisse",
        data=output.getvalue(),
        file_name="Arbeitsmappe_Ergebnisse.xlsx",
        mime="application/vnd.ms-excel"
    )

# %%