File size: 80,309 Bytes
1bc3235
 
c55ca34
1bc3235
c55ca34
1bc3235
c55ca34
 
1bc3235
c55ca34
1bc3235
c55ca34
1bc3235
c55ca34
 
 
1bc3235
c55ca34
1bc3235
 
c55ca34
 
 
 
 
 
68e7402
c55ca34
1bc3235
c55ca34
 
 
 
 
 
 
68e7402
c55ca34
 
 
 
 
1bc3235
 
c55ca34
1bc3235
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
9d4c959
1bc3235
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
 
c55ca34
 
 
 
 
1bc3235
c55ca34
 
 
 
1bc3235
c55ca34
 
 
 
 
 
 
 
 
1bc3235
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
 
c55ca34
1bc3235
 
c55ca34
 
 
 
1bc3235
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
 
1bc3235
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
 
 
1bc3235
c55ca34
 
 
 
1bc3235
c55ca34
 
1bc3235
c55ca34
 
1bc3235
c55ca34
 
 
1bc3235
c55ca34
 
1bc3235
c55ca34
 
 
1bc3235
c55ca34
 
1bc3235
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
1bc3235
c55ca34
 
 
1bc3235
c55ca34
 
 
 
 
 
 
1bc3235
c55ca34
 
1bc3235
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
1bc3235
c55ca34
1bc3235
 
 
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
1bc3235
c55ca34
1bc3235
 
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
1bc3235
c55ca34
1bc3235
 
 
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba494
c55ca34
68e7402
c55ca34
68e7402
1bc3235
 
c55ca34
 
 
1bc3235
c55ca34
 
 
 
 
 
 
1bc3235
c55ca34
 
 
41ba494
c55ca34
 
41ba494
c55ca34
 
41ba494
c55ca34
 
 
 
41ba494
c55ca34
 
 
 
 
41ba494
c55ca34
 
41ba494
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
c55ca34
 
 
 
 
41ba494
c55ca34
 
 
 
 
 
 
 
33c298f
c55ca34
33c298f
c55ca34
33c298f
 
41ba494
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba494
c55ca34
41ba494
 
c55ca34
 
 
 
41ba494
c55ca34
 
 
 
 
 
 
 
41ba494
c55ca34
 
 
41ba494
c55ca34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
c55ca34
 
 
 
 
 
 
 
1bc3235
c55ca34
1bc3235
c55ca34
1bc3235
 
 
c55ca34
 
 
 
 
1bc3235
 
c55ca34
 
 
1bc3235
c55ca34
 
 
 
1bc3235
 
 
c55ca34
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
# -*- coding: utf-8 -*-
"""

Energy system optimization model



HEMF EWL: Christopher Jahns, Julian Radek, Hendrik Kramer, Cornelia Klüter, Yannik Pflugfelder

"""
# %%
import numpy as np
import pandas as pd
import xarray as xr
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from io import BytesIO
import xlsxwriter
from linopy import Model
import sourced as src
import time


# Main function to run the Streamlit app
def main():
    """

    Main function to set up and solve the energy system optimization model, and handle user inputs and outputs.

    """
    setup_page()

    settings = load_settings()

    # fill session space with variables that are needed on all pages
    if 'settings' not in st.session_state:
        st.session_state.df = load_settings()
    st.session_state.settings = settings   
     
    if 'url_excel' not in st.session_state:
        st.session_state.url_excel = None

    if 'ui_model' not in st.session_state:
        st.session_state.url_excel = None
        
    if 'output' not in st.session_state:
        st.session_state.output = BytesIO()


    setup_sidebar(st.session_state.settings["df"])


    
    # # Navigation
    # pg = st.navigation([st.Page(page_model, title=st.session_state.settings["df"].loc['menu_modell',st.session_state.lang], icon="📊"), 
    #                      st.Page(page_documentation, title=st.session_state.settings["df"].loc['menu_doku',st.session_state.lang], icon="📓"), 
    #                      st.Page(page_about_us, title=st.session_state.settings["df"].loc['menu_impressum',st.session_state.lang], icon="💬")],
    #                    expanded=True)
    
    # # # Run the app
    # pg.run()
    
    # Create tabs for navigation
    tabs = st.tabs([
        st.session_state.settings["df"].loc['menu_modell', st.session_state.lang],
        st.session_state.settings["df"].loc['menu_doku', st.session_state.lang],
        st.session_state.settings["df"].loc['menu_impressum', st.session_state.lang]
    ])

    # Load and display content based on the selected tab
    with tabs[0]:  # Model page
        page_model()
    with tabs[1]:  # Documentation page
        page_documentation()
    with tabs[2]:  # About Us page
        page_about_us()
   


# %%
# Load settings and initial configurations
def load_settings():
    """

    Load settings for the app, including colors and language information.

    """
    settings = {
        'write_pickle_from_standard_excel': True,
        'df': pd.read_csv("language.csv", encoding="iso-8859-1", index_col="Label", sep=";"),
        'color_dict': {
            'Biomass': 'lightgreen',
            'Lignite': 'saddlebrown',
            'Fossil Hard coal': 'chocolate',  # Ein Braunton ähnlich Lignite
            'Fossil Oil': 'black',
            'CCGT': 'lightgray',  # Hellgrau
            'OCGT': 'darkgray',   # Dunkelgrau
            'RoR': 'aquamarine',
            'Hydro Water Reservoir': 'lightsteelblue',
            'Nuclear': 'gold',
            'PV': 'yellow',
            'WindOff': 'darkblue',
            'WindOn': 'green',
            'H2': 'tomato',
            'Pumped Hydro Storage': 'skyblue',
            'Battery storages': 'firebrick',
            'Electrolyzer': 'yellowgreen'
        },
        'colors': {
            'hemf_blau_dunkel': "#00386c",
            'hemf_blau_hell': "#00529f",
            'hemf_rot_dunkel': "#8b310d",
            'hemf_rot_hell': "#d04119",
            'hemf_grau': "#dadada"
        }
    }
    return settings

# Initialize Streamlit app
def setup_page():
    """

    Set up the Streamlit page with a specific layout, title, and favicon.

    """
    st.set_page_config(layout="wide", page_title="Investment tool", page_icon="media/favicon.ico", initial_sidebar_state="expanded")


# # Sidebar for language and links
# def setup_sidebar(df):
#     """
#     Set up the sidebar with language options and external links.
#     """
#     st.session_state.lang = st.sidebar.selectbox("Language", ["🇬🇧  EN", "🇩🇪  DE"], key="foo", label_visibility="collapsed")[-2:]

#     st.sidebar.markdown("""
#     <style>
#         text-align: center;
#         display: block;
#         margin-left: auto;
#         margin-right: auto;
#         width: 100%;
#     </style>
#     """, unsafe_allow_html=True)

#     with st.sidebar:
#         left_co, cent_co, last_co = st.columns([0.1, 0.8, 0.1])
#         with cent_co:
#             st.text(" ")  # add vertical empty space
#             ""+df.loc['menu_text', st.session_state.lang]
#             st.text(" ")  # add vertical empty space

#             if st.session_state.lang == "DE":
#                 st.write("Schaue vorbei beim")
#                 st.markdown(r'[Lehrstuhl für Energiewirtschaft](https://www.ewl.wiwi.uni-due.de)', unsafe_allow_html=True)
#             elif st.session_state.lang == "EN":
#                 st.write("Get in touch with the")
#                 st.markdown(r'[Chair of Management Science and Energy Economics](https://www.ewl.wiwi.uni-due.de/en)', unsafe_allow_html=True)

#             st.text(" ")  # add vertical empty space
#             st.image("media/Logo_HEMF.svg", width=200)
#             st.image("media/Logo_UDE.svg", width=200)


def setup_sidebar(df):
    """

    Set up the sidebar with language and level options as two-step selection,

    using localized text from the loaded dataframe.

    """

    # Step 1: Language selection
    lang_choice = st.sidebar.selectbox("Language", ["🇩🇪  DE", "🇬🇧  EN"], key="lang_select", label_visibility="collapsed")
    st.session_state.lang = lang_choice[-2:]  # 'EN' or 'DE'

    # Step 2: Localized level selection
    level_options = {
        f"🎓 {df.loc['menu_untergraduate', st.session_state.lang]}": "undergraduate",
        f"🎓 {df.loc['menu_graduate', st.session_state.lang]}": "graduate"
    }

    level_choice = st.sidebar.selectbox(df.loc['menu_level', st.session_state.lang], list(level_options.keys()), key="level_select")
    st.session_state.level = level_options[level_choice]

    # Optional styling and centered sidebar content
    st.sidebar.markdown("""

    <style>

        text-align: center;

        display: block;

        margin-left: auto;

        margin-right: auto;

        width: 100%;

    </style>

    """, unsafe_allow_html=True)

    with st.sidebar:
        left_co, cent_co, last_co = st.columns([0.1, 0.8, 0.1])
        with cent_co:
            st.text(" ")
            st.markdown(df.loc['menu_text', st.session_state.lang])
            st.text(" ")

            if st.session_state.lang == "DE":
                st.write("Schaue vorbei beim")
                st.markdown(r'[Lehrstuhl für Energiewirtschaft](https://www.ewl.wiwi.uni-due.de)', unsafe_allow_html=True)
            elif st.session_state.lang == "EN":
                st.write("Get in touch with the")
                st.markdown(r'[Chair of Management Science and Energy Economics](https://www.ewl.wiwi.uni-due.de/en)', unsafe_allow_html=True)

            st.text(" ")  # add vertical empty space
            st.image("media/Logo_HEMF.svg", width=200)
            st.image("media/Logo_UDE.svg", width=200)
            
# Load model input data
def load_model_input(df, write_pickle_from_standard_excel):
    """

    Load model input data from Excel or Pickle based on user input.

    """
    if st.session_state.url_excel is None:
        if write_pickle_from_standard_excel:
            url_excel = r'Input_Jahr_2023.xlsx'
            sets_dict, params_dict = src.load_data_from_excel(url_excel, write_to_pickle_flag=True)
        sets_dict, params_dict = src.load_from_pickle()
        #st.write(df.loc['model_title1.1', st.session_state.lang])
        # st.write('Running with standard data')
    else:
        url_excel = st.session_state.url_excel
        sets_dict, params_dict = src.load_data_from_excel(url_excel, load_from_pickle_flag=False)
        st.write(df.loc['model_title1.2', st.session_state.lang])

    return sets_dict, params_dict



def page_documentation():
    """

    Display documentation and mathematical model details.

    """
    
    df = st.session_state.settings["df"]
    
    st.header(df.loc['constr_header1', st.session_state.lang])
    st.write(df.loc['constr_header2', st.session_state.lang])
    
    col1, col2 = st.columns([6, 4])
    
    with col1:
        st.header(df.loc['constr_header3', st.session_state.lang])
        
        with st.container():
            
            # Objective function
            st.subheader(df.loc['constr_subheader_obj_func', st.session_state.lang])
            st.write(df.loc['constr_subheader_obj_func_descr', st.session_state.lang])                
            st.latex(r''' \text{min } C^{tot} = C^{op} + C^{inv}''')

            # Operational costs minus revenue for produced hydrogen
            st.write(df.loc['constr_c_op', st.session_state.lang])
            st.latex(r''' C^{op} = \sum_{i} y_{t,i} \cdot \left( \frac{c^{fuel}_{i}}{\eta_i} + c_{i}^{other} \right) \cdot \Delta t - \sum_{i \in \mathcal{I}^{PtG}} y^{h2}_{t,i} \cdot p^{h2} \cdot \Delta t''')
            
            # Investment costs
            st.write(df.loc['constr_c_inv', st.session_state.lang])           
            st.latex(r''' C^{inv} = \sum_{i} a_{i} \cdot K_{i} \cdot c^{inv}_{i}''')
            
            # Constraints
            st.subheader(df.loc['subheader_constr', st.session_state.lang])
            
            # Load-serving constraint
            st.write(df.loc['constr_load_serve', st.session_state.lang])
            st.latex(r''' \left( \sum_{i} y_{t,i} - \sum_{i} y_{t,i}^{ch} \right) \cdot \Delta t = D_t \cdot \Delta t, \quad \forall t \in \mathcal{T}''')
            
            # Maximum capacity limit
            st.write(df.loc['constr_max_cap', st.session_state.lang])
            st.latex(r''' y_{t,i} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}''')
            
            # Capacity limits for investment
            st.write(df.loc['constr_inv_cap', st.session_state.lang])
            st.latex(r''' K_{i} \leq 0, \quad \forall i \in \mathcal{I}^{no\_invest}''')
            
            # Prevent power production by PtG
            st.write(df.loc['constr_prevent_ptg', st.session_state.lang])
            st.latex(r''' y_{t,i} = 0, \quad \forall i \in \mathcal{I}^{PtG}''')
            
            # Prevent charging for non-storage technologies
            st.write(df.loc['constr_prevent_chg', st.session_state.lang])
            st.latex(r''' y_{t,i}^{ch} = 0, \quad \forall i \in \mathcal{I} \setminus \{ \mathcal{I}^{PtG} \cup \mathcal{I}^{Sto} \}''')
            
            # Maximum storage charging and discharging
            st.write(df.loc['constr_max_chg', st.session_state.lang])
            st.latex(r''' y_{t,i} + y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{Sto}''')
            
            # Maximum electrolyzer capacity
            st.write(df.loc['constr_max_cap_electrolyzer', st.session_state.lang])
            st.latex(r''' y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{PtG}''')
            
            # PtG H2 production
            st.write(df.loc['constr_prod_ptg', st.session_state.lang])
            st.latex(r''' y_{t,i}^{ch} \cdot \eta_i = y_{t,i}^{h2}, \quad \forall i \in \mathcal{I}^{PtG}''')
            
            # Infeed of renewables
            st.write(df.loc['constr_inf_res', st.session_state.lang])
            st.latex(r''' y_{t,i} + y_{t,i}^{curt} = s_{t,r,i} \cdot (K_{0,i} + K_i), \quad \forall i \in \mathcal{I}^{Res}''')
            
            # Maximum filling level restriction for storage power plants
            st.write(df.loc['constr_max_fil_sto', st.session_state.lang])
            # st.latex(r''' l_{t,i} \leq K_{0,i} \cdot e2p_i, \quad \forall i \in \mathcal{I}^{Sto}''')
            st.latex(r''' l_{t,i} \leq (K_{0,i} + K_{i}) \cdot \gamma_i^{Sto}, \quad \forall i \in \mathcal{I}^{Sto}''')
            
            # Filling level restriction for hydro reservoir
            st.write(df.loc['constr_fil_hyres', st.session_state.lang])
            st.latex(r''' l_{t+1,i} = l_{t,i} + ( h_{t,i} - y_{t,i}) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{HyRes}''')
            
            # Filling level restriction for other storages
            st.write(df.loc['constr_fil_sto', st.session_state.lang])
            st.latex(r''' l_{t+1,i} = l_{t,i} - \left(\frac{y_{t,i}}{\eta_i} - y_{t,i}^{ch} \cdot \eta_i \right) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{Sto}''')
            
            # CO2 emission constraint
            st.write(df.loc['constr_co2_lim', st.session_state.lang])
            st.latex(r''' \sum_{t} \sum_{i} \frac{y_{t,i}}{\eta_i} \cdot \chi^{CO2}_i \cdot \Delta t \leq L^{CO2}''')

            
    with col2:
        
        symbols_container = st.container()
        with symbols_container:
            st.header(df.loc['symb_header1', st.session_state.lang])
            st.write(df.loc['symb_header2', st.session_state.lang])
            
            st.subheader(df.loc['symb_header_sets', st.session_state.lang])          
            st.write(f"$\mathcal{{T}}$: {df.loc['symb_time_steps', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}$: {df.loc['symb_tech', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}^{{\\text{{Sto}}}}$: {df.loc['symb_sto_tech', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}^{{\\text{{Conv}}}}$: {df.loc['symb_conv_tech', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}^{{\\text{{PtG}}}}$: {df.loc['symb_ptg', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}^{{\\text{{Res}}}}$: {df.loc['symb_res', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}^{{\\text{{HyRes}}}}$: {df.loc['symb_hyres', st.session_state.lang]}")
            st.write(f"$\mathcal{{I}}^{{\\text{{no\_invest}}}}$: {df.loc['symb_no_inv', st.session_state.lang]}")


            
            # Variables section
            st.subheader(df.loc['symb_header_variables', st.session_state.lang])          
            st.write(f"$C^{{tot}}$: {df.loc['symb_tot_costs', st.session_state.lang]}")
            st.write(f"$C^{{op}}$: {df.loc['symb_c_op', st.session_state.lang]}")
            st.write(f"$C^{{inv}}$: {df.loc['symb_c_inv', st.session_state.lang]}")
            st.write(f"$K_i$: {df.loc['symb_inst_cap', st.session_state.lang]}")
            st.write(f"$y_{{t,i}}$: {df.loc['symb_el_prod', st.session_state.lang]}")
            st.write(f"$y_{{t, i}}^{{ch}}$: {df.loc['symb_el_ch', st.session_state.lang]}")
            st.write(f"$l_{{t,i}}$: {df.loc['symb_sto_fil', st.session_state.lang]}")
            st.write(f"$y_{{t, i}}^{{curt}}$: {df.loc['symb_curt', st.session_state.lang]}")
            st.write(f"$y_{{t, i}}^{{h2}}$: {df.loc['symb_h2_ptg', st.session_state.lang]}")

            
            # Parameters section
            st.subheader(df.loc['symb_header_parameters', st.session_state.lang])
            st.write(f"$D_t$: {df.loc['symb_energy_demand', st.session_state.lang]}")
            st.write(f"$p^{{h2}}$: {df.loc['symb_price_h2', st.session_state.lang]}")
            st.write(f"$c^{{fuel}}_{{i}}$: {df.loc['symb_fuel_costs', st.session_state.lang]}")
            st.write(f"$c_{{i}}^{{other}}$: {df.loc['symb_c_op_other', st.session_state.lang]}")
            st.write(f"$c^{{inv}}_{{i}}$: {df.loc['symb_c_inv_tech', st.session_state.lang]}")
            st.write(f"$a_{{i}}$: {df.loc['symb_annuity', st.session_state.lang]}")
            st.write(f"$\eta_i$: {df.loc['symb_eff_fac', st.session_state.lang]}")
            st.write(f"$K_{{0,i}}$: {df.loc['symb_max_cap_tech', st.session_state.lang]}")
            st.write(f"$\chi^{{CO2}}_i$: {df.loc['symb_co2_fac', st.session_state.lang]}")
            st.write(f"$L^{{CO2}}$: {df.loc['symb_co2_limit', st.session_state.lang]}")
            # st.write(f"$e2p_{{\\text{{Sto}}, i}}$: {df.loc['symb_etp', st.session_state.lang]}")
            st.write(f"$\gamma^{{\\text{{Sto}}}}_{{i}}$: {df.loc['symb_etp', st.session_state.lang]}")
            st.write(f"$s_{{t, r, i}}$: {df.loc['symb_res_supply', st.session_state.lang]}")
            st.write(f"$h_{{t, i}}$: {df.loc['symb_hyRes_inflow', st.session_state.lang]}")
    
    # css = float_css_helper(top="50")        
    # symbols_container.float(css)


def page_about_us():
    """

    Display information about the team and the project.

    """
    st.write("About Us/Impressum")

# %%
def page_model(): #, write_pickle_from_standard_excel, color_dict):    
    """

    Display the main model page for energy system optimization.



    This function sets up the user interface for the model input parameters, loads data, and configures the 

    optimization model before solving it and presenting the results.

    """
    
    df = st.session_state.settings["df"]
    color_dict = st.session_state.settings["color_dict"]
    write_pickle_from_standard_excel = st.session_state.settings["write_pickle_from_standard_excel"]
    
    


    # Load data from Excel or Pickle
    sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)

    # Unpack sets_dict into the workspace
    t = sets_dict['t']
    t_original = sets_dict['t']
    i = sets_dict['i']
    iSto = sets_dict['iSto']
    iConv = sets_dict['iConv']
    iPtG = sets_dict['iPtG']
    iRes = sets_dict['iRes']
    iHyRes = sets_dict['iHyRes']
       
    # Unpack params_dict into the workspace
    l_co2 = params_dict['l_co2']
    p_co2 = params_dict['p_co2']
    eff_i = params_dict['eff_i']
    life_i = params_dict['life_i']
    c_fuel_i = params_dict['c_fuel_i']
    c_other_i = params_dict['c_other_i']
    c_inv_i = params_dict['c_inv_i']
    co2_factor_i = params_dict['co2_factor_i']
    K_0_i = params_dict['K_0_i']
    e2p_iSto = params_dict['e2p_iSto']

    # Adjust efficiency for storage technologies
    eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto])  # Apply square root to cycle efficiency for storage technologies

    # Create columns for UI layout
    col1, col2 = st.columns([0.30, 0.70], gap="large")
 
    # Load input data
    with col1:
        
        st.title(df.loc['model_title1', st.session_state.lang])
        
        with open('Input_Jahr_2023.xlsx', 'rb') as f:
            st.download_button(df.loc['model_title1.3',st.session_state.lang], f, file_name='Input_Jahr_2023.xlsx')  # Download button for Excel template
        
        with st.form("input_file"):

        
            st.session_state.url_excel = st.file_uploader(label=df.loc['model_title1.4',st.session_state.lang])  # File uploader for user Excel file
        
            #st.title(df.loc['model_title4', st.session_state.lang])
 
            run_model_excel = st.form_submit_button(df.loc['model_run_info_excel', st.session_state.lang]) #, key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
            #else:
            #    run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])


    


    # Set up user interface for parameters
    with col2:
        
        st.title(df.loc['model_title3', st.session_state.lang])


    
        with st.form("input_custom"):
            
            col1form, col2form, col3form = st.columns([0.25, 0.25, 0.50])
            # Create a dictionary to map German names to English names
            tech_mapping_de_to_en = {
                df.loc[f'tech_{tech.lower()}', 'DE']: df.loc[f'tech_{tech.lower()}', 'EN']
                for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
            }

            # colum 1 form
            l_co2 = col1form.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label=df.loc['model_label_co2',st.session_state.lang], step=50)
            price_h2 = col1form.slider(value=100, min_value=0, max_value=300, label=df.loc['model_label_h2',st.session_state.lang], step=10)
            for i_idx in params_dict['c_fuel_i'].get_index('i'):
                if i_idx in ['Lignite']:
                    params_dict['c_fuel_i'].loc[i_idx] = col1form.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
                                                                       min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
                elif i_idx in ['Fossil Hard coal', 'Fossil Oil', 'CCGT']:
                    params_dict['c_fuel_i'].loc[i_idx] = col2form.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
                                                                         min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
            params_dict['c_fuel_i'].loc['OCGT'] = params_dict['c_fuel_i'].loc['CCGT']
            
            
            # # Set options and default values based on the selected language
            # if st.session_state.lang == 'DE':
            #     # German options for the user interface
            #     options = [
            #         df.loc[f'tech_{tech.lower()}', 'DE'] for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
            #     ]
            #     default = [
            #         df.loc[f'tech_{tech.lower()}', 'DE'] for tech in ['Lignite', 'CCGT', 'OCGT', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
            #         if f'tech_{tech.lower()}' in df.index
            #     ]
            # else:
            #     # English options for the user interface
            #     options = sets_dict['i']
            #     default = ['Lignite', 'CCGT', 'OCGT', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
            # Set options and default values based on the selected language
            # Set core technology list (will later depend on level)
            
            if st.session_state.level == 'undergraduate':
                    # Exclude specific technologies for undergraduates
                excluded_techs = {'Lignite', 'Pumped Hydro Storage', 'Electrolyzer'}
                tech_list = [tech for tech in sets_dict['i'] if tech not in excluded_techs]
                # tech_list = sets_dict['i']  # same for now
            else:
                tech_list = sets_dict['i']  # original set

            # Localize display labels based on selected language
            lang = st.session_state.lang
            options = [
                df.loc[f'tech_{tech.lower()}', lang] if f'tech_{tech.lower()}' in df.index else tech
                for tech in tech_list
            ]

            # Define default technologies (internal names) — same across all users
            default_techs = ['Lignite', 'CCGT', 'OCGT', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']

            # Translate default selections for UI (still uses internal list for logic)
            default = [
                df.loc[f'tech_{tech.lower()}', lang] if f'tech_{tech.lower()}' in df.index else tech
                for tech in default_techs if tech in tech_list
            ]

            # Multiselect for technology options in the user interface
            selected_technologies = col3form.multiselect(
                label=df.loc['model_label_tech', st.session_state.lang],
                options=options,
                default=[tech for tech in default if tech in options]
            )

            # If language is German, map selected German names back to their English equivalents
            if st.session_state.lang == 'DE':
                technologies_invest = [tech_mapping_de_to_en[tech] for tech in selected_technologies]
            else:
                technologies_invest = selected_technologies
            
            # Technologies that will not be invested in (based on English names)
            technologies_no_invest = [tech for tech in sets_dict['i'] if tech not in technologies_invest]
            
            col4form, col5form = st.columns([0.25, 0.75])
            dt = col4form.number_input(label=df.loc['model_label_t',st.session_state.lang], min_value=1, max_value=len(t), value=6,
                                 help=df.loc['model_label_t_info',st.session_state.lang])
            
            run_model_manual = col5form.form_submit_button(df.loc['model_run_info_gui', st.session_state.lang])    

            #run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])

    st.markdown("-------")

    # run_model_manual = True    
        
    if run_model_excel or run_model_manual:
        # Model setup
        
        info_yellow_build = st.info(df.loc['label_build_model', st.session_state.lang])


        if run_model_excel: # overwrite with excel values
            #sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)
            sets_dict, params_dict = src.load_data_from_excel(st.session_state.url_excel, write_to_pickle_flag=True)

            # Unpack sets_dict into the workspace
            t = sets_dict['t']
            t_original = sets_dict['t']
            i = sets_dict['i']
            iSto = sets_dict['iSto']
            iConv = sets_dict['iConv']
            iPtG = sets_dict['iPtG']
            iRes = sets_dict['iRes']
            iHyRes = sets_dict['iHyRes']
              
            # Unpack params_dict into the workspace
            l_co2 = params_dict['l_co2']
            p_co2 = params_dict['p_co2']
            eff_i = params_dict['eff_i']
            # life_i = params_dict['life_i']
            c_fuel_i = params_dict['c_fuel_i']
            c_other_i = params_dict['c_other_i']
            c_inv_i = params_dict['c_inv_i']
            co2_factor_i = params_dict['co2_factor_i']
            K_0_i = params_dict['K_0_i']
            e2p_iSto = params_dict['e2p_iSto']
       
            # Adjust efficiency for storage technologies
            eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto])  # Apply square root to cycle efficiency for storage technologies


        # Time series aggregation for various parameters
        D_t = timstep_aggregate(dt, params_dict['D_t'], t)
        s_t_r_iRes = timstep_aggregate(dt, params_dict['s_t_r_iRes'], t)
        h_t = timstep_aggregate(dt, params_dict['h_t'], t)
        t = D_t.get_index('t')
        partial_year_factor = (8760 / len(t)) / dt

        m = Model()
        
        # Define Variables    
        C_tot = m.add_variables(name='C_tot')  # Total costs
        C_op = m.add_variables(name='C_op', lower=0)  # Operational costs
        C_inv = m.add_variables(name='C_inv', lower=0)  # Investment costs
        K = m.add_variables(coords=[i], name='K', lower=0)  # Endogenous capacity
        y = m.add_variables(coords=[t, i], name='y', lower=0)  # Electricity production
        y_ch = m.add_variables(coords=[t, i], name='y_ch', lower=0)  # Electricity consumption
        l = m.add_variables(coords=[t, i], name='l', lower=0)  # Storage filling level
        y_curt = m.add_variables(coords=[t, i], name='y_curt', lower=0)  # RES curtailment
        y_h2 = m.add_variables(coords=[t, i], name='y_h2', lower=0)  # H2 production
    
        # Define Objective function
        C_tot = C_op + C_inv
        m.add_objective(C_tot)
        
        # Define Constraints
        # Operational costs minus revenue for produced hydrogen
        m.add_constraints((y * c_fuel_i / eff_i).sum() * dt - (y_h2.sel(i=iPtG) * price_h2).sum() * dt == C_op, name='C_op_sum')
    
        # Investment costs
        m.add_constraints((K * c_inv_i).sum() == C_inv, name='C_inv_sum')
    
        # Load serving
        m.add_constraints((((y).sum(dims='i') - y_ch.sum(dims='i')) * dt == D_t.sel(t=t) * dt), name='load')
    
        # Maximum capacity limit
        m.add_constraints((y - K <= K_0_i), name='max_cap')
    
        # Capacity limits for investment
        m.add_constraints((K.sel(i=technologies_no_invest) <= 0), name='max_cap_invest')
    
        # Prevent power production by PtG
        m.add_constraints((y.sel(i=iPtG) <= 0), name='prevent_ptg_prod')
    
        # Prevent charging for non-storage technologies
        m.add_constraints((y_ch.sel(i=[x for x in i if x not in iPtG and x not in iSto]) <= 0), name='no_charging')
    
        # Maximum storage charging and discharging
        m.add_constraints((y.sel(i=iSto) + y_ch.sel(i=iSto) - K.sel(i=iSto) <= K_0_i.sel(i=iSto)), name='max_cha')
    
        # Maximum electrolyzer capacity
        m.add_constraints((y_ch.sel(i=iPtG) - K.sel(i=iPtG) <= K_0_i.sel(i=iPtG)), name='max_cha_ptg')
    
        # PtG H2 production
        m.add_constraints(y_ch.sel(i=iPtG) * eff_i.sel(i=iPtG) == y_h2.sel(i=iPtG), name='ptg_h2_prod')
    
        # Infeed of renewables
        m.add_constraints((y.sel(i=iRes) - s_t_r_iRes.sel(i=iRes).sel(t=t) * K.sel(i=iRes) + y_curt.sel(i=iRes) == s_t_r_iRes.sel(i=iRes).sel(t=t) * K_0_i.sel(i=iRes)), name='infeed')
    
        # Maximum filling level restriction for storage power plants
        m.add_constraints((l.sel(i=iSto) - K.sel(i=iSto) * e2p_iSto.sel(i=iSto) <= K_0_i.sel(i=iSto) * e2p_iSto.sel(i=iSto)), name='max_sto_filling')
    
        # Filling level restriction for hydro reservoir
        m.add_constraints(l.sel(i=iHyRes) - l.sel(i=iHyRes).roll(t=-1) + y.sel(i=iHyRes) * dt == h_t.sel(t=t) * dt, name='filling_level_hydro')
    
        # Filling level restriction for other storages
        m.add_constraints(l.sel(i=iSto) - (l.sel(i=iSto).roll(t=-1) - (y.sel(i=iSto) / eff_i.sel(i=iSto)) * dt + y_ch.sel(i=iSto) * eff_i.sel(i=iSto) * dt) == 0, name='filling_level')
    
        # CO2 limit
        m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000, name='CO2_limit')
    
        # Solve the model
        info_yellow_build.empty()
        info_green_build = st.success(df.loc['label_build_model', st.session_state.lang])
        info_yellow_solve = st.info(df.loc['label_solve_model', st.session_state.lang])
        

        m.solve(solver_name='highs')
    
        info_yellow_solve.empty()
        info_green_solve = st.success(df.loc['label_solve_model', st.session_state.lang])
        info_yellow_plot = st.info(df.loc['label_generate_plots', st.session_state.lang])


    
        # Prepare columns for figures
        colb1, colb2 = st.columns(2)
    
        # Generate and display figures
        st.markdown("---")
        

        if st.session_state.level == "undergraduate":
            i_with_capacity = m.solution['K'].where((m.solution['K'] > 0) & (m.solution['i'] != 'Electrolyzer')).dropna(dim='i').get_index('i')
            df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df, show = False)
            # df_production = plot_production(m, i_with_capacity, dt, color_dict, colb1, df, show = False)
            df_total_costs = plot_total_costs(m, colb1, df)
            df_CO2_price = plot_co2_price(m, colb2, df)

            df_new_capacities = plot_new_capacities(m, color_dict, colb1, df)
            df_residual_load_duration = plot_residual_load_duration(m, dt, colb2, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment, iConv)

            df_fullload = calculate_and_plot_fullload_hours(m, dt, color_dict, colb1)
            # df_production = plot_production(m, i_with_capacity, dt, color_dict, colb1, df)s
            df_price = plot_electricity_prices(m, dt, colb2, df, df_residual_load_duration)

            df_production = plot_production(m, i_with_capacity, dt, color_dict, colb1, df)
            
            df_emissions = calculate_and_plot_emissions(m, eff_i, co2_factor_i, dt=1, color_dict=color_dict, col=colb1)
            df_emissions_cumulative = calculate_and_plot_cumulative_emissions(m, eff_i, co2_factor_i,dt, color_dict, colb2, df)
            # df_residual_load_duration = plot_residual_load_duration(m, dt, colb2, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment, iConv)


            df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df, show= True)
            df_charging = plot_storage_charging(m, iSto, color_dict, colb2, df)
            # df_filtered = calculate_and_plot_investment_costs(m,df_new_capacities, c_inv_i, color_dict, colb1, df)
            # df_contr_marg_sum = calculate_and_plot_contribution_margin(m, i, iRes, dt, color_dict, colb2, df)
        else:
            df_total_costs = plot_total_costs(m, colb1, df)
            df_CO2_price = plot_co2_price(m, colb2, df)
            df_new_capacities = plot_new_capacities(m, color_dict, colb1, df)
           
            # Only plot production for technologies with capacity
            i_with_capacity = m.solution['K'].where((m.solution['K'] > 0) & (m.solution['i'] != 'Electrolyzer')).dropna(dim='i').get_index('i')
            df_production = plot_production(m, i_with_capacity, dt, color_dict, colb2, df)
            # df_price = plot_electricity_prices(m, dt, colb2, df)
            df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
            df_residual_load_duration = plot_residual_load_duration(m, dt, colb1, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment, iConv)
            df_price = plot_electricity_prices(m, dt, colb2, df, df_residual_load_duration)
            
            df_contr_marg = plot_contribution_margin(m, dt, i_with_capacity, color_dict, colb1, df)
            # df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
            df_charging = plot_storage_charging(m, iSto, color_dict, colb2, df)
            df_h2_prod = plot_hydrogen_production(m, iPtG, color_dict, colb1, df)            
        
        # df_stackplot = plot_stackplot(m)
    
        # Export results
        
        st.session_state.output = BytesIO()
        
        
        with pd.ExcelWriter(st.session_state.output, engine='xlsxwriter') as writer:
            disaggregate_df(df_total_costs, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_total_costs', st.session_state.lang], index=False)
            disaggregate_df(df_CO2_price, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_co2_price', st.session_state.lang], index=False)
            disaggregate_df(df_price, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_prices', st.session_state.lang], index=False)
            # disaggregate_df(df_contr_marg, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_contribution_margin', st.session_state.lang], index=False)
            disaggregate_df(df_new_capacities, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_capacities', st.session_state.lang], index=False)
            disaggregate_df(df_production, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_production', st.session_state.lang], index=False)
            disaggregate_df(df_charging, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_charging', st.session_state.lang], index=False)
            disaggregate_df(D_t.to_dataframe().reset_index(), t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_demand', st.session_state.lang], index=False)
            disaggregate_df(df_curtailment, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_curtailment', st.session_state.lang], index=False)
            # disaggregate_df(df_h2_prod, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_h2_production', st.session_state.lang], index=False)
            
        with col1:
            st.title(df.loc['model_title2', st.session_state.lang])
                   
            st.download_button(label=df.loc['model_title2.1',st.session_state.lang], disabled=(st.session_state.output.getbuffer().nbytes==0), data=st.session_state.output.getvalue(), file_name="workbook.xlsx", mime="application/vnd.ms-excel")
 
        info_yellow_plot.empty()
        info_green_plot = st.success(df.loc['label_generate_plots', st.session_state.lang])

        time.sleep(1)

        info_green_build.empty()
        info_green_solve.empty()
        info_green_plot.empty()

        st.stop()
        

        
        # st.rerun()         


def timstep_aggregate(time_steps_aggregate, xr_data, t):
    """

    Aggregates time steps in the data using rolling mean and selects based on step size.

    """
    return xr_data.rolling(t=time_steps_aggregate).mean().sel(t=t[0::time_steps_aggregate])

# Visualization functions

def plot_total_costs(m, col, df):
    """

    Displays the total costs.

    """
    total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
    total_costs_rounded = round(total_costs / 1e9, 2)
    with col:
        st.markdown(
            f"<h3><b>{df.loc['plot_label_total_costs', st.session_state.lang]} {total_costs_rounded}</b></h3>", 
            unsafe_allow_html=True
        )
        
    df_total_costs = pd.DataFrame({'Total costs':[total_costs]})
    return df_total_costs

def plot_co2_price(m, col, df):
    """

    Displays the CO2 price based on the CO2 constraint dual values.

    """
    CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
    CO2_price_rounded = round(CO2_price, 2)
    df_CO2_price = pd.DataFrame({'CO2 price': [CO2_price]})
    with col:
        st.markdown(
            f"<h3><b>{df.loc['plot_label_co2_price', st.session_state.lang]} {CO2_price_rounded}</b></h3>",
            unsafe_allow_html=True
        )
    
    return df_CO2_price


def plot_new_capacities(m, color_dict, col, df):
    """

    Plots the new capacities installed in MW as a bar chart and pie chart.

    Includes technologies with 0 MW capacity in the bar chart.

    Supports both German and English labels for technologies while ensuring color consistency.

    """
    # Convert the solution for new capacities to a DataFrame
    df_new_capacities = m.solution['K'].round(0).to_dataframe().reset_index()

    # Store the English technology names in a separate column to maintain color consistency
    df_new_capacities['i_en'] = df_new_capacities['i']

    # Check if the language is German and map English names to German for display
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_new_capacities['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        # Replace the English technology names with German ones for display
        df_new_capacities['i'] = df_new_capacities['i_en'].replace(tech_mapping_en_to_de)

    # Bar plot for new capacities (including technologies with 0 MW)
    fig_bar = px.bar(df_new_capacities, y='i', x='K', orientation='h',
                     title=df.loc['plot_label_new_capacities', st.session_state.lang], 
                     color='i_en',  # Use the English names for consistent coloring
                     color_discrete_map=color_dict,
                     labels={'K': '', 'i': ''} # Delete double labeling
                     )

    # Hide the legend completely since the labels are already next to the bars
    fig_bar.update_layout(showlegend=False)

    with col:
        st.plotly_chart(fig_bar)

    if st.session_state.level == "graduate":
        # Pie chart for new capacities (only show technologies with K > 0 in pie chart)
        df_new_capacities_filtered = df_new_capacities[df_new_capacities["K"] > 0]
        fig_pie = px.pie(df_new_capacities_filtered, names='i', values='K',
                        title=df.loc['plot_label_new_capacities_pie', st.session_state.lang], 
                        color='i_en', color_discrete_map=color_dict)

        # Remove English labels (i_en) from the pie chart legend
        fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
        fig_pie.for_each_trace(lambda t: t.update(name=df_new_capacities_filtered['i'].iloc[0] if st.session_state.lang == 'DE' else t.name))

        with col:
            st.plotly_chart(fig_pie)
        
    return df_new_capacities


def plot_production(m, i_with_capacity, dt, color_dict, col, df, show=True):
    """

    Plots the energy production for technologies with capacity as an area chart.

    Supports both German and English labels for technologies while ensuring color consistency.

    """
    # Convert the production data to a DataFrame
    df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()

    # Store the English technology names in a separate column to maintain color consistency
    df_production['i_en'] = df_production['i']
    
    # Convert 't'-column in a datetime format
    df_production['t'] = df_production['t'].str.strip("'")
    df_production['t'] = pd.to_datetime(df_production['t'], format='%Y-%m-%d %H:%M %z')

    # Check if the language is German and map English names to German for display
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_production['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        # Replace the English technology names with German ones for display
        df_production['i'] = df_production['i_en'].replace(tech_mapping_en_to_de)

    # Area plot for energy production
    fig = px.area(df_production, y='y', x='t', 
                  title=df.loc['plot_label_production', st.session_state.lang], 
                  color='i_en',  # Use the English names for consistent coloring
                  color_discrete_map=color_dict,
                  labels={'y': '', 't': '', 'i_en': df.loc['label_technology', st.session_state.lang]} # Delete double labeling
                  )
    
    # Update legend labels to display German names instead of English
    if st.session_state.lang == 'DE':
        fig.for_each_trace(lambda trace: trace.update(name=tech_mapping_en_to_de[trace.name]))
    
    fig.update_traces(line=dict(width=0))
    fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
    
    # # Customize x-axis for better date formatting
    # fig.update_layout(
    #     xaxis=dict(
    #         tickformat="%d/%m/%Y",  # Display months and years in MM/YYYY format
    #         title='',  # No title for the x-axis
    #         type="date"  # Ensure x-axis is treated as a date axis
    #     ),
    #     xaxis_tickangle=-45  # Tilt the ticks for better readability
    # )
    
    with col:
        st.plotly_chart(fig)

    # Pie chart for total production
    if st.session_state.level == "graduate":
        df_production_sum = (df_production.groupby(['i', 'i_en'])['y'].sum() * dt / 1000).round(0).reset_index()

        # If the language is set to German, display German labels, otherwise use English
        pie_column = 'i' if st.session_state.lang == 'DE' else 'i_en'

        # Pie chart for total production
        fig_pie = px.pie(df_production_sum, names=pie_column, values='y',
                        title=df.loc['plot_label_total_production_pie', st.session_state.lang], 
                        color='i_en',  # Ensure the coloring stays consistent using the 'i_en' column
                        color_discrete_map=color_dict)

        # Update legend title to reflect the correct language
        fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
        
        with col:
            st.plotly_chart(fig_pie)

    return df_production


def plot_electricity_prices(m, dt, col, df, df_residual_load_duration):
    """

    Plots the electricity price and the price duration curve.

    Supports both German and English labels for the plot titles and axis labels.

    """
    # Convert the dual constraints to a DataFrame
    df_price = m.constraints['load'].dual.to_dataframe().reset_index()
    
    # Convert 't'-column in a datetime format
    df_price['t'] = df_price['t'].str.strip("'")
    df_price['t'] = pd.to_datetime(df_price['t'], format='%Y-%m-%d %H:%M %z')

    # # Line plot for electricity prices
    # fig_price = px.line(df_price, y='dual', x='t', 
    #                     title=df.loc['plot_label_electricity_prices', st.session_state.lang], 
    #                     # range_y=[0, 250], 
    #                     labels={'dual': '', 't': ''}
    #                     )
    # with col:
    #     st.plotly_chart(fig_price)

    # Create the price duration curve
    df_sorted_price = df_price["dual"].repeat(dt).sort_values(ascending=False).reset_index(drop=True) / int(dt)
    df_residual_load_sorted = df_residual_load_duration.sort_values(by='Residual_Load', ascending=False).reset_index(drop=True)
    df_axis2 = df_residual_load_sorted['Residual_Load']
    
    ax2_max = np.max(df_axis2)
    ax2_min = np.min(df_axis2)
    
    fig_duration = go.Figure()
    
    # Add primary y-axis trace (Price duration curve)
    fig_duration.add_trace(go.Scatter(
        x=df_sorted_price.index,
        y=df_sorted_price,
        mode='lines',
        name=df.loc['plot_label_price_duration_curve', st.session_state.lang],  # Price duration label
        line=dict(color='blue', width=2)  # Blue line for primary y-axis
    ))
    
    # Add secondary y-axis trace (Residual load)
    fig_duration.add_trace(go.Scatter(
        x=df_axis2.index,
        y=df_axis2,
        mode='lines',
        name=df.loc['plot_label_residual_load', st.session_state.lang],  # Residual load label
        line=dict(color='red', width=2),  # Red line for secondary y-axis
        yaxis='y2'  # Link this trace to the secondary y-axis
    ))
    
    # Layout mit separaten Achsen
    fig_duration.update_layout(
        title=df.loc['plot_label_price_duration_curve', st.session_state.lang],
        xaxis=dict(
            title=df.loc['label_hours', st.session_state.lang]  # Common x-axis
        ),
        yaxis=dict(
            title=df.loc['plot_label_price_duration_curve', st.session_state.lang],  # Title for primary y-axis
            range=[-(100/(ax2_max/(ax2_max-ax2_min))-100), 100],  # Primary y-axis range
            titlefont=dict(color='blue'),  # Blue color for primary axis title
            tickfont=dict(color='blue')  # Blue ticks for primary axis
        ),
        yaxis2=dict(
            title=df.loc['plot_label_residual_load', st.session_state.lang],  # Title for secondary y-axis
            range=[ax2_min, ax2_max],  # Secondary y-axis range
            titlefont=dict(color='red'),  # Red color for secondary axis title
            tickfont=dict(color='red'),  # Red ticks for secondary axis
            overlaying='y',  # Overlay secondary axis on primary
            side='right'  # Place secondary y-axis on the right side
        ),
    legend=dict(
        x=1,  # Positioniert die Legende am rechten Rand
        y=1,  # Positioniert die Legende am oberen Rand
        xanchor='right',  # Verankert die Legende am rechten Rand
        yanchor='top',  # Verankert die Legende am oberen Rand
        bgcolor='rgba(255, 255, 255, 0.5)',  # Weißer Hintergrund mit Transparenz
        bordercolor='black',
        borderwidth=1
    )
    )

    
    with col:
        st.plotly_chart(fig_duration)

    # Set y-axis range conditionally
    range_y = [0, 250] if st.session_state.level == "graduate" else None
    # Line plot for electricity prices
    fig_price = px.line(df_price, y='dual', x='t', 
                        title=df.loc['plot_label_electricity_prices', st.session_state.lang], 
                        labels={'dual': '', 't': ''}
                        )
    
    # Apply axis range if needed
    if range_y is not None:
        fig_price.update_yaxes(range=range_y)
    
    with col:
        st.plotly_chart(fig_price)
    
    return df_price

def plot_residual_load_duration(m, dt, col, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment, iConv):
    """

    Plots the residual load and corresponding production as a stacked area chart.

    Supports both German and English labels for the plot titles and axis labels.

    Consistent color coding for technologies using a predefined color dictionary.

    """

    # Extract load data and repeat each value to match the total number of hours in the year
    df_load = D_t.values.flatten()
    total_hours = len(df_load) * dt  # Calculate the total number of hours dynamically
    repeated_load = np.repeat(df_load, dt)[:total_hours]  # Repeat values to represent each hour

    # Convert production data to DataFrame
    df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()

    # Pivot production data to get technologies as columns and time 't' as index
    df_production_pivot = df_production.pivot(index='t', columns='i', values='y')

    # Repeat the pivoted production data to match the number of hours
    repeated_index = np.repeat(df_production_pivot.index, dt)[:total_hours]  # Create repeated index
    df_production_repeated = df_production_pivot.loc[repeated_index].reset_index(drop=True)

    # Create load series with the same index as the repeated production data
    df_load_series = pd.Series(repeated_load, index=df_production_repeated.index, name='Load')

    # Combine load with repeated production data
    df_combined = df_production_repeated.copy()
    df_combined['Load'] = df_load_series

    # Identify renewable technologies from iRes
    iRes_list = iRes.tolist()  # Convert the Index to a list

    # Calculate renewable generation (only include available technologies in df_combined)
    renewable_columns = [col for col in iRes_list if col in df_combined.columns]
    df_combined['Renewable_Generation'] = df_combined[renewable_columns].sum(axis=1) if renewable_columns else 0
    
    # Create pivot table of curtailment
    df_curtailment_pivot = df_curtailment.pivot(index='t', columns='i', values='y_curt')
    repeated_index = np.repeat(df_curtailment_pivot.index, dt)[:total_hours]  # Create repeated index
    df_curtailment_repeated = df_curtailment_pivot.loc[repeated_index].reset_index(drop=True)
    df_curtailment_repeated['Sum'] = df_curtailment_repeated.sum(axis=1)
    df_combined['Sum_curtailment'] = -df_curtailment_repeated['Sum']

    # Calculate residual load as the difference between total load and renewable generation
    df_combined['Residual_Load'] = df_combined['Load'] - df_combined['Renewable_Generation'] + df_combined['Sum_curtailment']

    # Sort DataFrame by residual load (descending order) to create the duration curve
    df_sorted = df_combined.sort_values(by='Residual_Load', ascending=False).reset_index(drop=True)

    # Identify all technology columns except 'Load', 'Residual_Load', 'Renewable_Generation'
    technology_columns = [col for col in df_combined.columns if col not in ['Load', 'Residual_Load', 'Renewable_Generation', 'Sum_curtailment']]

    # Mapping English technology names to German (if desired)
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in technology_columns if f'tech_{tech.lower()}' in df.index
        }
    else:
        tech_mapping_en_to_de = {tech: tech for tech in technology_columns}  # Use the original names if not in German


    # Plotting with Plotly - Creating stacked area chart
    fig = go.Figure()
    
    # Sort technology_columns based on the highest index in df_sorted (only for iConv); others are placed at the end
    sorted_technology_columns = sorted(
        technology_columns,
        key=lambda tech: (
            tech not in iConv,  # Place non-iConv technologies at the end
            -df_sorted[df_sorted[tech] != 0].index.max() if tech in iConv and not df_sorted[df_sorted[tech] != 0].empty else float('inf')
        )
    )


    # Add stacked area traces for each production technology with consistent colors and language-specific names
    for tech in sorted_technology_columns:
        tech_name = tech_mapping_en_to_de.get(tech, tech)  # Get the translated name or fallback to the original
        fig.add_trace(go.Scatter(
            x=df_sorted.index,
            y=df_sorted[tech],
            mode='lines',
            stackgroup='one',  # For stacking traces
            name=tech_name,
            line=dict(width=0.5, color=color_dict.get(tech))
        ))

    # Add residual load trace as a red line
    fig.add_trace(go.Scatter(
        x=df_sorted.index,
        y=df_sorted['Residual_Load'],
        mode='lines',
        name=df.loc['plot_label_residual_load', st.session_state.lang],  # Residual load label in current language
        line=dict(color='red', width=2)
    ))

    
    # Add curtailment trace as a shaded area with a dark yellow tone
    fig.add_trace(go.Scatter(
        x=df_sorted.index,
        y=df_sorted['Sum_curtailment'],
        mode='lines',  # Line mode for the boundary of the area
        name=df.loc['plot_label_sum_curtailment', st.session_state.lang],  # Curtailment label in current language
        line=dict(color='rgba(204, 153, 0, 1)', width=1.5),  # Dark yellow line
        fill='tozeroy',  # Fill area down to the x-axis
        fillcolor='rgba(204, 153, 0, 0.3)'  # Semi-transparent dark yellow for the fill
    ))
    
    # Layout settings for the plot
    fig.update_layout(
        title=df.loc['plot_label_residual_load_curve', st.session_state.lang],
        xaxis_title=df.loc['label_hours', st.session_state.lang],
        template="plotly_white",
    )

    # Display the plot in Streamlit
    with col:
        st.plotly_chart(fig)

    return df_combined
        
    

def plot_contribution_margin(m, dt, i_with_capacity, color_dict, col, df):
    """

    Plots the contribution margin for each technology.

    Supports both German and English labels for titles and axes while ensuring color consistency.

    """
    # Convert the dual constraints to a DataFrame
    df_contr_marg = m.constraints['max_cap'].dual.sel(i=i_with_capacity).to_dataframe().reset_index()

    # Adjust the 'dual' values for the contribution margin calculation
    df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)

    # Store the English technology names in a separate column to maintain color consistency
    df_contr_marg['i_en'] = df_contr_marg['i']
    
    # Convert 't'-column in a datetime format
    df_contr_marg['t'] = pd.to_datetime(df_contr_marg['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')

    # Check if the language is German and map English names to German for display
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_contr_marg['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        # Replace the English technology names with German ones for display
        df_contr_marg['i'] = df_contr_marg['i_en'].replace(tech_mapping_en_to_de)

    # Plot contribution margin for each technology
    fig = px.line(df_contr_marg, y='dual', x='t',
                  title=df.loc['plot_label_contribution_margin', st.session_state.lang],
                  color='i_en',  # Use the English names for consistent coloring
                  range_y=[0, 250], color_discrete_map=color_dict,
                  labels={'dual':'', 't':'', 'i_en':''}
                  )

    # Update legend to display the correct language
    fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
    
    # For German language, update the legend to show German technology names
    if st.session_state.lang == 'DE':
        fig.for_each_trace(lambda t: t.update(name=df_contr_marg.loc[df_contr_marg['i_en'] == t.name, 'i'].values[0]))

    # Display the plot
    with col:
        st.plotly_chart(fig)

    return df_contr_marg




def plot_curtailment(m, iRes, color_dict, col, df, show=True):
    """

    Plots the curtailment of renewable energy.

    Supports both German and English labels for titles and axes while ensuring color consistency.

    """
    # Convert the curtailment solution to a DataFrame
    df_curtailment = m.solution['y_curt'].sel(i=iRes).to_dataframe().reset_index()
    
    # Convert 't'-column in a datetime format
    df_curtailment['t'] = pd.to_datetime(df_curtailment['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')

    # Store the English technology names in a separate column to maintain color consistency
    df_curtailment['i_en'] = df_curtailment['i']

    # Check if the language is German and map English names to German for display
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_curtailment['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        # Replace the English technology names with German ones for display
        df_curtailment['i'] = df_curtailment['i_en'].replace(tech_mapping_en_to_de)
    else:
        df_curtailment['i'] = df_curtailment['i_en']  # Use English names if not German

    # Area plot for curtailment of renewable energy
    fig = px.area(df_curtailment, y='y_curt', x='t', 
                  title=df.loc['plot_label_curtailment', st.session_state.lang], 
                  color='i_en',  # Use the English names for consistent coloring
                  color_discrete_map=color_dict,
                  labels={'y_curt': '', 't': ''} # Delete double labeling
                  )

    # Remove line traces and use fill colors for the area plot
    fig.update_traces(line=dict(width=0))
    fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))

    # Update the legend title to reflect the correct language (German or English)
    fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
    
    # For German language, update the legend to show German technology names
    if st.session_state.lang == 'DE':
        fig.for_each_trace(lambda t: t.update(name=df_curtailment.loc[df_curtailment['i_en'] == t.name, 'i'].values[0]))

    # Display the plot
    if show: 
        with col:
            st.plotly_chart(fig)

    return df_curtailment



def plot_storage_charging(m, iSto, color_dict, col, df):
    """

    Plots the charging of storage technologies.

    Supports both German and English labels for titles and axes while ensuring color consistency.

    """
    # Convert the storage charging solution to a DataFrame
    df_charging = m.solution['y_ch'].sel(i=iSto).to_dataframe().reset_index()
    
    # Drop out infinitesimal numbers
    df_charging['y_ch'] = df_charging['y_ch'].apply(lambda x: 0 if x < 0.01 else x)
    
    # Convert 't'-column in a datetime format
    df_charging['t'] = pd.to_datetime(df_charging['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')

    # Store the English technology names in a separate column to maintain color consistency
    df_charging['i_en'] = df_charging['i']

    # Check if the language is German and map English names to German for display
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_charging['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        # Replace the English technology names with German ones for display
        df_charging['i'] = df_charging['i_en'].replace(tech_mapping_en_to_de)
    else:
        df_charging['i'] = df_charging['i_en']  # Use English names if not German

    # Area plot for storage charging
    fig = px.area(df_charging, y='y_ch', x='t', 
                  title=df.loc['plot_label_storage_charging', st.session_state.lang], 
                  color='i_en',  # Use the English names for consistent coloring
                  color_discrete_map=color_dict,
                  labels={'y_ch': '', 't': ''} # Delete double labeling                            
                  )

    # Remove line traces and use fill colors for the area plot
    fig.update_traces(line=dict(width=0))
    fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))

    # Update the legend title to reflect the correct language (German or English)
    fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
    
    # For German language, update the legend to show German technology names
    if st.session_state.lang == 'DE':
        fig.for_each_trace(lambda t: t.update(name=df_charging.loc[df_charging['i_en'] == t.name, 'i'].values[0]))

    # Display the plot
    with col:
        st.plotly_chart(fig)

    return df_charging



def plot_hydrogen_production(m, iPtG, color_dict, col, df):
    """

    Plots the hydrogen production.

    Supports both German and English labels for titles and axes while ensuring color consistency.

    """
    # Convert the hydrogen production data to a DataFrame
    df_h2_prod = m.solution['y_h2'].sel(i=iPtG).to_dataframe().reset_index()
    
    # Convert 't'-column in a datetime format
    df_h2_prod['t'] = pd.to_datetime(df_h2_prod['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')

    # Store the English technology names in a separate column to maintain color consistency
    df_h2_prod['i_en'] = df_h2_prod['i']

    # Check if the language is German and map English names to German for display
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_h2_prod['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        # Replace the English technology names with German ones for display
        df_h2_prod['i'] = df_h2_prod['i_en'].replace(tech_mapping_en_to_de)
    else:
        df_h2_prod['i'] = df_h2_prod['i_en']  # Keep English names if not German

    # Area plot for hydrogen production
    fig = px.area(df_h2_prod, y='y_h2', x='t', 
                  title=df.loc['plot_label_hydrogen_production', st.session_state.lang], 
                  color='i_en',  # Use the English names for consistent coloring
                  color_discrete_map=color_dict,
                  labels={'y_h2': '', 't': ''} # Delete double labeling                  
                  )

    # Remove line traces and use fill colors for the area plot
    fig.update_traces(line=dict(width=0))
    fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))

    # Update the legend title to reflect the correct language (German or English)
    fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
    
    # For German language, update the legend to show German technology names
    if st.session_state.lang == 'DE':
        fig.for_each_trace(lambda t: t.update(name=df_h2_prod.loc[df_h2_prod['i_en'] == t.name, 'i'].values[0]))

    # Display the plot
    with col:
        st.plotly_chart(fig)

    return df_h2_prod



def calculate_and_plot_fullload_hours(m, dt, color_dict, col):
    """

    Calculates full load hours for units with positive capacity and plots the result.



    Parameters:

    - m: Optimization model object containing solution['K'] (capacity) and solution['y'] (production).

    - dt: Time resolution of the production data (e.g., in hours).

    - color_dict: Dictionary mapping unit identifiers (i) to colors for plotting.

    - col: Streamlit column or panel where the plot should be rendered (e.g., colb1).

    """
    # Filter indices with positive capacity
    i_with_capacity = m.solution['K'].where(m.solution['K'] > 0).dropna(dim='i').get_index('i')

    # Extract production and capacity data
    df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
    df_capacity = m.solution['K'].sel(i=i_with_capacity).to_dataframe().reset_index()

    # Sum production and calculate full load hours
    df_production_sum = (df_production.groupby('i')['y'].sum() * dt).round(0).reset_index()
    df_production_sum = df_production_sum.set_index('i').loc[i_with_capacity].reset_index()

    df_fullload = df_production_sum['y'] / df_capacity['K']
    df_fullload = df_fullload.to_frame(name='fullload')
    df_fullload['i'] = df_production_sum['i']
    df_fullload = df_fullload[['i', 'fullload']]

    # Plot
    fig = px.bar(
        df_fullload,
        y='i',
        x='fullload',
        orientation='h',
        title='Volllaststunden [h]',
        color='i',
        color_discrete_map=color_dict
    )
    col.plotly_chart(fig)

    return df_fullload



def calculate_and_plot_emissions(m, eff_i, co2_factor_i, dt, color_dict, col):
    """

    Calculates emissions from model output and plots an area chart of emissions over time.



    Parameters:

    - m: Optimization model with solution['y'] (production) and solution['K'] (capacity).

    - eff_i: xarray DataArray of efficiency values indexed by 'i'.

    - co2_factor_i: xarray DataArray of CO₂ emission factors indexed by 'i'.

    - dt: Time resolution of the data (e.g., in hours).

    - color_dict: Dictionary mapping unit identifiers (i) to colors.

    - col: Streamlit column or panel for rendering the plot.



    Returns:

    - df_production_emissions_unpivot: DataFrame with emissions per unit and time.

    """

    # Filter technologies with positive capacity
    i_with_capacity = m.solution['K'].where(m.solution['K'] > 0).dropna(dim='i').get_index('i')

    # Get production data for those technologies
    df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()

    # Pivot production data
    df_production_pivot = df_production.pivot(index='t', columns='i', values='y')
    available_columns = df_production_pivot.columns.intersection(i_with_capacity)
    df_production_pivot = df_production_pivot[available_columns]

    # Get efficiency and CO₂ factors only for available technologies
    df_efficiency = eff_i.sel(i=available_columns)
    co2_factor_i_with_capacity = co2_factor_i.sel(i=available_columns)
    color_dict_with_capacity = {i: color_dict[i] for i in available_columns}
    desired_order = available_columns.tolist()

    # Compute emissions
    df_production_emissions = df_production_pivot / df_efficiency * co2_factor_i_with_capacity * dt

    # Unpivot for plotting
    df_production_emissions_unpivot = df_production_emissions.reset_index().melt(
        id_vars='t', var_name='i', value_name='y'
    )
    df_production_emissions_unpivot['i'] = pd.Categorical(
        df_production_emissions_unpivot['i'],
        categories=desired_order,
        ordered=True
    )
    df_production_emissions_unpivot = df_production_emissions_unpivot.sort_values(by=['t', 'i'])

    # Plot
    fig = px.area(
        df_production_emissions_unpivot,
        y='y',
        x='t',
        title='CO₂-Emissionen [t]',
        color='i',
        color_discrete_map=color_dict_with_capacity
    )
    fig.update_traces(line=dict(width=0))
    fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))

    # Display in Streamlit
    col.plotly_chart(fig)

    return df_production_emissions_unpivot


def calculate_and_plot_cumulative_emissions(m, eff_i, co2_factor_i, dt, color_dict, col, df):
    """

    Calculates and plots cumulative CO₂ emissions sorted by time for units with capacity > 0,

    with support for multilingual labels and consistent coloring.



    Parameters:

    - m: Optimization model with 'K' and 'y'

    - eff_i: DataArray of efficiencies indexed by 'i'

    - co2_factor_i: DataArray of CO₂ factors indexed by 'i'

    - dt: Time resolution

    - color_dict: Dict mapping English tech names to colors

    - col: Streamlit column for plot

    - df: DataFrame for label translations (e.g., from Excel)



    Returns:

    - df_cumulative_emissions_unpivot: Cumulative emissions DataFrame (melted format)

    """

    # Step 1: Filter technologies with capacity > 0
    i_with_capacity = m.solution['K'].where(m.solution['K'] > 0).dropna(dim='i').get_index('i')

    # Step 2: Get production data
    df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
    df_production['i_en'] = df_production['i']

    # Translate if needed
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_production['i_en'].unique()
            if f'tech_{tech.lower()}' in df.index
        }
        df_production['i'] = df_production['i_en'].replace(tech_mapping_en_to_de)

    # Step 3: Pivot and align
    df_production_pivot = df_production.pivot(index='t', columns='i_en', values='y')
    available_columns = df_production_pivot.columns.intersection(i_with_capacity)
    df_production_pivot = df_production_pivot[available_columns]

    # Step 4: Emissions calculation
    df_efficiency = eff_i.sel(i=available_columns)
    co2_factor_i_with_capacity = co2_factor_i.sel(i=available_columns)
    df_emissions = df_production_pivot / df_efficiency * co2_factor_i_with_capacity * dt

    # Step 5: Add total and sort
    df_emissions['total'] = df_emissions.sum(axis=1)
    df_emissions_sorted = df_emissions.sort_values(by='total', ascending=True)

    # Step 6: Cumulative sum and cleanup
    df_cumsum = df_emissions_sorted.drop(columns='total').cumsum(axis=0)
    df_cumsum = df_cumsum.loc[:, (df_cumsum != 0).any(axis=0)]

    # Step 7: Unpivot
    df_cumulative_emissions_unpivot = df_cumsum.reset_index().melt(
        id_vars='t', var_name='i_en', value_name='y'
    )

    # Step 8: Translate display names (if needed)
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_cumulative_emissions_unpivot['i_en'].unique()
            if f'tech_{tech.lower()}' in df.index
        }
        df_cumulative_emissions_unpivot['i'] = df_cumulative_emissions_unpivot['i_en'].replace(tech_mapping_en_to_de)
    else:
        df_cumulative_emissions_unpivot['i'] = df_cumulative_emissions_unpivot['i_en']

    # Set 0 → NaN for plotting
    df_cumulative_emissions_unpivot['y'] = df_cumulative_emissions_unpivot['y'].replace(0, np.nan)

    # Step 9: Plot
    color_dict_with_capacity = {i: color_dict[i] for i in df_cumulative_emissions_unpivot['i_en'].unique() if i in color_dict}

    fig = px.area(
        df_cumulative_emissions_unpivot,
        y='y',
        x='t',
        title=df.loc['plot_label_cumulative_emissions', st.session_state.lang],
        color='i_en',
        color_discrete_map=color_dict_with_capacity,
        labels={'i': '', 'y': ''}
    )

    # Rename legend entries to display translated names
    legend_map = dict(zip(
        df_cumulative_emissions_unpivot['i_en'],
        df_cumulative_emissions_unpivot['i']
    ))

    fig.for_each_trace(
        lambda t: t.update(name=legend_map.get(t.name, t.name),
                        legendgroup=legend_map.get(t.name, t.name),
                        hovertemplate=t.hovertemplate.replace(t.name, legend_map.get(t.name, t.name)))
    )
    fig.update_traces(line=dict(width=0))
    fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
    fig.update_layout(legend_title_text=None)

    col.plotly_chart(fig)

    return df_cumulative_emissions_unpivot



def calculate_and_plot_investment_costs(m, df_new_capacities, c_inv_i, color_dict, col, df):
    """

    Calculates and plots investment costs per technology, with multilingual support.

    - Uses 'i_en' for color consistency.

    - Displays 'i' in the selected language.

    - Filters out 'Battery storages'.

    

    Parameters:

    - df_new_capacities: DataFrame with columns ['i', 'K'] for new capacities.

    - c_inv_i: xarray DataArray or Series with investment costs indexed by 'i'.

    - color_dict: Dictionary mapping English technology identifiers (i_en) to colors.

    - col: Streamlit column to display the plot.

    - df: Translation/label lookup DataFrame with keys like 'tech_pv', 'tech_windon' etc.



    Returns:

    - df_invest_costs: DataFrame with investment costs per technology.

    """

    # Ensure 'i_en' is available for color mapping
    df_new_capacities = df_new_capacities.copy()
    df_new_capacities['i_en'] = df_new_capacities['i']
    i_with_capacity = m.solution['K'].where(m.solution['K'] > 0).dropna(dim='i').get_index('i')
    available_columns = df_new_capacities.columns.intersection(i_with_capacity)

    # Translate if language is German
    if st.session_state.lang == 'DE':
        tech_mapping_en_to_de = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in df_new_capacities['i_en'] if f'tech_{tech.lower()}' in df.index
        }
        df_new_capacities['i'] = df_new_capacities['i_en'].replace(tech_mapping_en_to_de)

    # Filter out 'Battery storages'
    df_filtered = df_new_capacities[df_new_capacities['i_en'] != 'Battery storages'].copy()

    # # Calculate investment costs
    df_filtered['Investment'] = df_filtered['K'] * c_inv_i
    color_dict_with_capacity = {i: color_dict[i] for i in available_columns}
    # Plot
    fig = px.bar(
        df_filtered,
        y='i',
        x='Investment',
        orientation='h',
        title=df.loc['plot_label_investment_costs', st.session_state.lang],
        color='i_en',
        color_discrete_map=color_dict_with_capacity,  
        labels={'i': '', 'Investment': ''}
    )
    fig.update_layout(showlegend=False)
    col.plotly_chart(fig)

    return df_filtered


def calculate_and_plot_contribution_margin(m, i, iRes, dt, color_dict, col, df):
    """

    Calculates and plots the contribution margin (Deckungsbeitrag) per technology.

    Mirrors original working logic, with optional language and coloring.



    Parameters:

    - m: Optimization model with 'y', 'max_cap', 'load'

    - i: Full list of technologies (for ordering and reindexing)

    - iRes: Subset of residual techs (e.g. PV, WindOn)

    - dt: Time step length in hours

    - color_dict: Dictionary of colors (keyed by technology names)

    - col: Streamlit column to display the plot

    - df: Translation table with tech labels and plot titles



    Returns:

    - df_contr_marg_sum: DataFrame with contribution margin results

    """

    # Production data for all technologies
    df_production_all = m.solution['y'].sel(i=i).to_dataframe().reset_index()
    
    # Dual values from max_cap constraint
    df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()

    # Merge and multiply
    df_merged = pd.merge(df_production_all, df_contr_marg, on=['t', 'i'])
    df_merged['y_new'] = df_merged['y'] * df_merged['dual']
    df_merged = df_merged[['t', 'i', 'y_new']]
    df_contr_marg_sum = df_merged.groupby('i')['y_new'].sum().reset_index()

    # Handle residual technologies with load constraint duals
    df_production_res = m.solution['y'].sel(i=iRes).to_dataframe().reset_index()
    df_price_res = m.constraints['load'].dual.to_dataframe().reset_index()
    df_merged_res = pd.merge(df_production_res, df_price_res, on='t')
    df_merged_res['multiplied_value'] = df_merged_res['y'] * df_merged_res['dual']
    df_merged_res = df_merged_res[['t', 'i', 'multiplied_value']]
    df_contr_marg_res = df_merged_res.groupby('i')['multiplied_value'].sum().reset_index()
    df_contr_marg_res['multiplied_value'] = df_contr_marg_res['multiplied_value'] * -dt

    # Combine both results
    df_contr_marg_sum = pd.merge(df_contr_marg_sum, df_contr_marg_res, on='i', how='left')
    df_contr_marg_sum['y_new'] = df_contr_marg_sum['multiplied_value'].combine_first(df_contr_marg_sum['y_new'])
    df_contr_marg_sum = df_contr_marg_sum.drop(columns=['multiplied_value'])
    df_contr_marg_sum['y'] = df_contr_marg_sum['y_new'] * -1

    # Translate labels if needed
    if st.session_state.lang == 'DE':
        tech_mapping = {
            df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
            for tech in i if f'tech_{tech.lower()}' in df.index
        }
        df_contr_marg_sum['i_en'] = df_contr_marg_sum['i']
        df_contr_marg_sum['i'] = df_contr_marg_sum['i_en'].replace(tech_mapping)
    else:
        df_contr_marg_sum['i_en'] = df_contr_marg_sum['i']

    # Reorder by original list
    # df_contr_marg_sum = df_contr_marg_sum.set_index('i_en').loc[i].reset_index(drop=False)
    if 'i' in df_contr_marg_sum.columns:
        df_contr_marg_sum = df_contr_marg_sum.drop(columns='i')

    df_contr_marg_sum = df_contr_marg_sum.set_index('i_en').loc[i].reset_index()

    # Plot
    title = df.loc['plot_label_contribution_margin', st.session_state.lang]
    fig = px.bar(
        df_contr_marg_sum,
        y='i',
        x='y',
        orientation='h',
        title=title,
        color='i_en',
        color_discrete_map=color_dict,
        labels={'i': '', 'y': ''}
    )

    # Localized legend
    legend_map = dict(zip(df_contr_marg_sum['i_en'], df_contr_marg_sum['i']))
    fig.for_each_trace(lambda t: t.update(
        name=legend_map.get(t.name, t.name),
        legendgroup=legend_map.get(t.name, t.name),
        hovertemplate=t.hovertemplate.replace(t.name, legend_map.get(t.name, t.name))
    ))
    fig.update_layout(legend_title_text=None)

    col.plotly_chart(fig)

    return df_contr_marg_sum



def disaggregate_df(df, t, t_original, dt):
    """

    Disaggregates the DataFrame based on the original time steps.

    """
    if "t" not in list(df.columns):
        return df

    # Change format of t back
    df['t'] = "'" + pd.to_datetime(df['t'], utc=True).dt.tz_convert('Europe/Berlin').dt.strftime('%Y-%m-%d %H:%M %z') + "'"
    
    df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)
    df_output = df.merge(df_t_all, on='t').drop('t', axis=1).rename({'t_all': 't'}, axis=1)
    df_output = df_output[[df_output.columns[-1]] + list(df_output.columns[:-1])]
    # Drop the helping column i_en
    df_output = df_output.drop(columns=['i_en'], errors='ignore')
    return df_output.sort_values('t')


if __name__ == "__main__":
    main()