Spaces:
Sleeping
Sleeping
File size: 25,439 Bytes
1bc3235 68e7402 1bc3235 33c298f 41ba494 19f91d8 33c298f 41ba494 1bc3235 41ba494 1bc3235 19f91d8 1bc3235 4a0f09c 1bc3235 19f91d8 1bc3235 68e7402 1bc3235 19f91d8 1bc3235 68e7402 1bc3235 9d4c959 1bc3235 41ba494 1bc3235 33c298f 1bc3235 33c298f 1bc3235 41ba494 1bc3235 33c298f 9d4c959 41ba494 1bc3235 4a0f09c 1bc3235 33c298f 1bc3235 19f91d8 4a0f09c 1bc3235 4a0f09c 1bc3235 19f91d8 4a0f09c 1bc3235 41ba494 7bd2a95 1bc3235 33c298f 1bc3235 9d4c959 1bc3235 9d4c959 41ba494 33c298f 1bc3235 33c298f 1bc3235 41ba494 1bc3235 33c298f 1bc3235 41ba494 1bc3235 33c298f 1bc3235 33c298f 1bc3235 41ba494 1bc3235 33c298f 1bc3235 41ba494 1bc3235 68e7402 1bc3235 f46eaef 4a0f09c 33c298f 41ba494 1bc3235 4a0f09c 1bc3235 4a0f09c 1bc3235 9d4c959 1bc3235 4a0f09c 1bc3235 4a0f09c 1bc3235 41ba494 68e7402 41ba494 1bc3235 41ba494 1bc3235 41ba494 1bc3235 68e7402 1bc3235 68e7402 4a0f09c 1bc3235 41ba494 1bc3235 41ba494 1bc3235 41ba494 1bc3235 41ba494 1bc3235 41ba494 1bc3235 4a0f09c 1bc3235 41ba494 1bc3235 41ba494 33c298f 41ba494 33c298f 41ba494 33c298f 41ba494 33c298f 41ba494 33c298f 1bc3235 33c298f 41ba494 1bc3235 41ba494 7bd2a95 41ba494 1bc3235 41ba494 1bc3235 41ba494 33c298f 41ba494 33c298f 41ba494 1bc3235 33c298f 1bc3235 4a0f09c 41ba494 4a0f09c 41ba494 4a0f09c 33c298f 1bc3235 4a0f09c 1bc3235 4a0f09c 1bc3235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# %%
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
from numpy import arange
import xarray as xr
import highspy
from linopy import Model, EQUAL
import pandas as pd
import plotly.express as px
import streamlit as st
import sourced as src
import numpy as np
import tempfile
## Setting
write_pickle_from_standard_excel = True
st.set_page_config(layout="wide")
# you can create columns to better manage the flow of your page
# this command makes 3 columns of equal width
col1, col2, col3, col4 = st.columns(4)
col1.header("Data Input")
col4.header("Download Results")
# Color dictionary for figures
color_dict = {'Biomasse': 'lightgreen',
'Braunkohle': 'red',
'Erdgas': 'orange',
'Steinkohle': 'darkgrey',
'Erdöl': 'brown',
'Laufwasser': 'aquamarine',
'Kernenergie': 'cyan',
'PV': 'yellow',
'WindOff': 'darkblue',
'WindOn': 'blue',
'Batteriespeicher': 'purple'}
# %%
with col1:
with open('Input_Jahr_2021.xlsx', 'rb') as f:
st.download_button('Download Excel Vorlage', f, file_name='Input_Jahr_2021.xlsx') # Defaults to 'application/octet-stream'
#url_excel = r'Input_Jahr_2021.xlsx'
url_excel = st.file_uploader(label = 'Excel Datei hochladen')
if url_excel == None:
if write_pickle_from_standard_excel:
url_excel = r'Input_Jahr_2021.xlsx'
sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag= True)
sets_dict, params_dict = src.load_from_pickle()
with col4:
st.write('Lauf mit Standarddaten')
else:
# sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False)
sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag = True)
with col4:
st.write('Lauf mit Nutzerdaten')
# Debugging output to verify that sets_dict is defined
# st.write(f"sets_dict: {sets_dict}")
# st.write(f"params_dict: {params_dict}")
# # %%
def timstep_aggregate(time_steps_aggregate, xr ):
return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate])
#s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)
# %%
#sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True)
# %%
#sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False)
# Unpack sets_dict into the workspace
t = sets_dict['t']
t_original = sets_dict['t']
i = sets_dict['i']
iSto = sets_dict['iSto']
iConv = sets_dict['iConv']
# iPtG = sets_dict['iPtG']
iRes = sets_dict['iRes']
# iHyRes = sets_dict['iHyRes']
# Unpack params_dict into the workspace
l_co2 = params_dict['l_co2']
p_co2 = params_dict['p_co2']
eff_i = params_dict['eff_i']
life_i = params_dict['life_i']
c_fuel_i = params_dict['c_fuel_i']
c_other_i = params_dict['c_other_i']
c_inv_i = params_dict['c_inv_i']
co2_factor_i = params_dict['co2_factor_i']
c_var_i = params_dict['c_var_i']
K_0_i = params_dict['K_0_i']
e2p_iSto = params_dict['e2p_iSto']
# Sliders and input boxes for parameters
with col2:
# Slider for CO2 limit [mio. t]
l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 Limit [Mio. t]", step=10)
# # Slider for H2 price / usevalue [€/MWH_th]
# price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Wasserstoffpreis [€/MWh]", step=10)
for i_idx in c_fuel_i.get_index('i'):
if i_idx in ['Braunkohle']:
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10)
dt = st.number_input(label="Zeitliche Auflösung [h]", min_value=1, max_value=len(t), value=6, help="Geben Sie nur ganze Zahlen zwischen 1 und 8760 (oder 8784 für Schaltjahre) ein.")
with col3:
# Slider for CO2 limit [mio. t]
for i_idx in c_fuel_i.get_index('i'):
if i_idx in ['Steinkohle', 'Erdöl','Erdgas']:
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10)
# technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Biomasse','Laufwasser','Kernenergie','Braunkohle','Steinkohle','Erdöl','Erdgas','WindOff','WindOn','PV','Batteriespeicher'])
technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Kernenergie','Braunkohle','Steinkohle','Erdgas', 'Erdöl','Biomasse','Laufwasser','WindOn','WindOff','PV','Batteriespeicher'])
technologies_no_invest = [x for x in i if x not in technologies_invest]
# Aggregate time series
D_t = timstep_aggregate(dt,params_dict['D_t'])
s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
# h_t = timstep_aggregate(dt,params_dict['h_t'])
t = D_t.get_index('t')
partial_year_factor = (8760/len(t))/dt
#time_steps_aggregate = 6
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
price_co2 = 0
# Aggregate time series
#D_t = timstep_aggregate(dt,params_dict['D_t'])
#s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
#h_t = timstep_aggregate(dt,params_dict['h_t'])
#t = D_t.get_index('t')
#partial_year_factor = (8760/len(t))/dt
#technologies_no_invest = st.multiselect(label='Technology invest', options=i)
#technologies_no_invest = ['Electrolyzer','Biomass','RoR','Hydro Water Reservoir','Nuclear']
# %%
### Variables
m = Model()
C_tot = m.add_variables(name = 'C_tot') # Total costs
C_op = m.add_variables(name = 'C_op', lower = 0) # Operational costs
C_inv = m.add_variables(name = 'C_inv', lower = 0) # Investment costs
K = m.add_variables(coords = [i], name = 'K', lower = 0) # Endogenous capacity
y = m.add_variables(coords = [t,i], name = 'y', lower = 0) # Electricity production --> für Elektrolyseure ausschließen
y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0) # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen
l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level
w = m.add_variables(coords = [t], name = 'w', lower = 0)
y_curt = m.add_variables(coords = [t,i], name = 'y_curt', lower = 0) # RES curtailment
# y_h2 = m.add_variables(coords = [t,i], name = 'y_h2', lower = 0)
## Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)
## Costs terms for objective function
# Operational costs (minus revenue for produced hydrogen)
# C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt - (y_h2.sel(i = iPtG) * price_h2).sum() * dt == C_op, name = 'C_op_sum')
C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt == C_op, name = 'C_op_sum')
# Investment costs
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')
## Load serving
loadserve_t = m.add_constraints((((y ).sum(dims = 'i') - y_ch.sum(dims = 'i')) * dt == D_t.sel(t = t) * dt), name = 'load')
# loadserve_t = m.add_constraints((((y ).sum(dims = 'i') ) * dt == D_t.sel(t = t) * dt), name = 'load')
## Maximum capacity limit
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap')
## Maximum capacity limit
maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest')
## Prevent power production by PtG
# no_power_prod_iPtG_t = m.add_constraints((y.sel(i = iPtG) <= 0), name = 'prevent_ptg_prod')
## Maximum storage charging and discharging
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) - y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha')
## Maximum electrolyzer capacity
# ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG) <= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg')
## PtG H2 production
# h2_prod_iPtG_t = m.add_constraints(y_ch.sel(i = iPtG) * eff_i.sel(i = iPtG) == y_h2.sel(i = iPtG), name = 'ptg_h2_prod')
## Infeed of renewables
infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) + y_curt.sel(i = iRes) == s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name = 'infeed')
## Maximum filling level restriction storage power plant
maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling')
## Filling level restriction hydro reservoir
# filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro')
## Filling level restriction other storages
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) / eff_i.sel(i = iSto)) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')
## CO2 limit
# l_co2 = 50
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000 , name = 'CO2_limit')
## set run-of-river power plants capacity limit to 5 GW
RoR_cap = m.add_constraints(K.sel(i = 'Laufwasser') <= 5000, name = 'RoR_cap')
Biomass_cap = m.add_constraints(K.sel(i = 'Biomasse') <= 9000, name = 'Biomass_cap')
# Nuclear_cap = m.add_constraints(K.sel(i = 'Kernenergie') <= 3000, name = 'Kernenergie_cap')
# nuclear_production_constraint = m.add_constraints(y.sel(i='Kernenergie') == K.sel(i='Kernenergie'), name='Nuclear_Production_Capacity')
# %%
m.solve(solver_name = 'highs')
st.markdown("---")
colb1, colb2 = st.columns(2)
# %%
#c_var_i.to_dataframe(name='VarCosts')
# %%
# Installed Cap
# Assuming df_excel has columns 'All' and 'Capacities'
fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
y='i', x='K', orientation='h', title='Installierte Kapazitäten insgesamt [MW]', color='i')
#fig
# %%
total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
total_costs_rounded = round(total_costs/1e9, 2)
df_total_costs = pd.DataFrame({'Total costs':[total_costs]})
with colb1:
st.write('Gesamtkosten: ' + str(total_costs_rounded) + ' Mrd. €')
# %%
#df_Co2_price = pd.DataFrame({'CO2_Price: ':[float(m.constraints['CO2_limit'].dual.values) * (-1)]})
CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
CO2_price_rounded = round(CO2_price, 2)
df_CO2_price = pd.DataFrame({'CO2 price':[CO2_price]})
with colb2:
#st.write(str(df_Co2_price))
st.write('CO2 Preis: ' + str(CO2_price_rounded) + ' €/t')
# %%
df_new_capacities = m.solution['K'].to_dataframe().reset_index()
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='Neu installierte Kapazitäten [MW]', color='i', color_discrete_map=color_dict)
with colb1:
fig
# %%
D_t_sorted = D_t.sortby(D_t, ascending = False).to_dataframe().reset_index()
# NaN entries to the end
D_t_sorted = D_t_sorted.sort_values(by='Nachfrage', ascending=False).reset_index(drop=True)
# expand df_price to the size of t
D_t_sorted = D_t_sorted.loc[D_t_sorted.index.repeat(dt)].reset_index(drop=True)
x_loadcurve = np.arange(1, D_t_sorted['Nachfrage'].size + 1)
# residual load curve
df_production_res = m.solution['y'].sel(i = iRes).to_dataframe().reset_index()
# sum up over t
df_production_res_sum = df_production_res.groupby('t')['y'].sum().reset_index()
# D_t into dateframe
D_t_df = D_t.to_dataframe().reset_index()
df_residual = D_t_df['Nachfrage'] - df_production_res_sum['y']
# sort
df_residual = df_residual.sort_values(ascending=False).reset_index(drop=True)
df_residual = df_residual.loc[df_residual.index.repeat(dt)].reset_index(drop=True)
df_combined = pd.DataFrame({
'x': np.concatenate([x_loadcurve, x_loadcurve]),
'y': np.concatenate([D_t_sorted['Nachfrage'], df_residual]),
'label': ['Nachfrage'] * len(x_loadcurve) + ['Residual Load'] * len(x_loadcurve)
})
# Create the integrated plot using Plotly Express
fig = px.line(df_combined, x='x', y='y', color='label', title='Lastdauerlinie [MW]',
labels={"x": "Stunden im Jahr", "y": "Leistung [MW]"})
# Specific updates for each trace
fig.for_each_trace(
lambda trace: trace.update(line=dict(color='blue')) if trace.name == 'Nachfrage' else trace.update(line=dict(color='red', dash='dash'))
)
with colb2:
fig.update_layout(
legend_title='Legende'
)
fig
# fig.show()
# %%
# calculate full load hours
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index()
df_capacity = m.solution['K'].sel(i = i_with_capacity).to_dataframe().reset_index()
df_production_sum = (df_production.groupby('i')['y'].sum() * dt).round(0).reset_index()
# reorder rows according to i_with_capacity
df_production_sum = df_production_sum.set_index('i').loc[i_with_capacity].reset_index()
# df_production_sum['i'] = pd.Categorical(df_production_sum['i'], categories=desired_order, ordered=True)
df_fullload = df_production_sum['y']/df_capacity['K']
# to dataframe
df_fullload = df_fullload.to_frame()
# rename column
df_fullload.columns = ['fullload']
df_fullload['i'] = df_production_sum['i']
# change order of columns
df_fullload = df_fullload[['i', 'fullload']]
fig = px.bar(df_fullload, y='i', x=df_fullload['fullload'], orientation='h', title='Volllaststunden [h]', color='i', color_discrete_map=color_dict)
with colb1:
fig
# fig.show()
# %%
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Stromproduktion Lastgang [MW]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb1:
fig
# fig.show()
# %%
df_price = m.constraints['load'].dual.to_dataframe().reset_index()
# expand df_price to the size of t
df_price = df_price.loc[df_price.index.repeat(dt)].reset_index(drop=True)
# sort prices descending
df_sorted_price = df_price["dual"].sort_values(ascending=False).reset_index(drop=True)
# generate x-axis for price duration curve
x_price = np.arange(1, df_sorted_price.size + 1)
fig = px.line(y=df_sorted_price, x=x_price, title='Preisdauerlinie [€/MWh]', labels={"x": "Stunden im Jahr"},range_y=[0,350])
with colb2:
fig
# %%
fig = px.line(df_price, y='dual', x='t', title='Strompreis [€/MWh]', range_y=[0,350])
with colb2:
fig
# %%
# curtailment
df_curtailment = m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index()
fig = px.area(m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index(), y='y_curt', x='t', title='Abregelung [MWh]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb1:
fig
# %%
df_charging = m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index()
fig = px.area(m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index(), y='y_ch', x='t', title='Speicherbeladung [MWh]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb2:
fig
# %%
# df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
# df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)
# fig = px.line(df_contr_marg, y='dual', x='t',title='Deckungsbeitrag [€]', color='i', range_y=[0,350], color_discrete_map=color_dict)
# with colb2:
# fig
# %%
# generate dataframe steplength = 1 same size as t
# x = np.arange(1, t.size + 1)
x = np.arange(1,t.size)
df_production_pivot = df_production.pivot(index='t', columns='i', values='y')
# sort columns according to i_with_capacity
df_production_pivot = df_production_pivot[i_with_capacity]
df_efficiency = eff_i.sel(i = i_with_capacity)
co2_factor_i_with_capacity = co2_factor_i.sel(i = i_with_capacity)
# colour_dict = {i: color_dict[i] for i in i_with_capacity}
color_dict_with_capacity = {i: color_dict[i] for i in i_with_capacity}
desired_order = i_with_capacity.tolist()
# multiply df_production with co2 factor
df_production_emissions = df_production_pivot/df_efficiency * co2_factor_i_with_capacity*dt
# unpivot df_production_emissions, sorting by datetime
df_production_emissions_unpivot = df_production_emissions.reset_index().melt(id_vars='t', var_name='i', value_name='y')
df_production_emissions_unpivot['i'] = pd.Categorical(df_production_emissions_unpivot['i'], categories=desired_order, ordered=True)
df_production_emissions_unpivot = df_production_emissions_unpivot.sort_values(by=['t', 'i'])
# rearrange rows according to i_with_capacity
# generate area plot of df_production_emissions_unpivot over t
fig = px.area(df_production_emissions_unpivot, y='y', x='t', title='Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb1:
fig
# %%
# Sum up second row of df_production_emissions
df_production_emissions_sum = df_production_emissions.copy()
df_production_emissions_sum['total'] = df_production_emissions_sum.sum(axis=1)
# sort by total generation
df_production_emissions_sum = df_production_emissions_sum.sort_values(by='total', ascending=True)
# generate new dataframe where all columns but dateTime are cumulated
df_production_emissions_sum_cumsum = df_production_emissions_sum.cumsum(axis=0)
# remove columns which are completely zero
df_production_emissions_sum_cumsum = df_production_emissions_sum_cumsum.loc[:, (df_production_emissions_sum_cumsum != 0).any(axis=0)]
# unpivot df_production_emissions_sum_cumsum
df_production_emissions_sum_unpivot = df_production_emissions_sum_cumsum.reset_index().melt(id_vars='t', var_name='i', value_name='y')
# keep i = i_with_capacity
df_production_emissions_sum_unpivot = df_production_emissions_sum_unpivot[df_production_emissions_sum_unpivot['i'].isin(i_with_capacity)].reset_index(drop=True)
# set values 0= NaN
df_production_emissions_sum_unpivot['y'] = df_production_emissions_sum_unpivot['y'].replace(0, np.nan)
# generate layered area plot of unpivoted_df_sorted_cap over num
fig = px.area(df_production_emissions_sum_unpivot, y='y', x='t', title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity)
# fig = px.area(unpivoted_df_sorted_cap, y='cumsum', x='t', title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity)
# Update traces
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
# fig.show()
with colb2:
fig
# %%
# plot investment costs
# c-inv_i to dataframe
if c_inv_i.name is None:
c_inv_i.name = 'c_inv_i'
c_inv_i_df = c_inv_i.to_dataframe().reset_index()
# multiply c_inv_i_df with K
df_invest_costs = df_new_capacities['K']* c_inv_i
df_invest_costs = df_invest_costs.to_frame()
df_invest_costs.columns = ['K']
df_invest_costs['i'] = df_new_capacities['i']
fig = px.bar(df_invest_costs, y='i', x='K', orientation='h', title='Investitionskosten [Mrd. €]', color='i', color_discrete_map=color_dict)
# fig.show()
with colb1:
fig
# %%
df_production_all = m.solution['y'].sel(i = i).to_dataframe().reset_index()
# Deckungsbeitrag = Erlöse - Kosten
df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
# # contr_margin for i_with_capacity
# df_contr_marg = df_contr_marg[df_contr_marg['i'].isin(i_with_capacity)]. reset_index(drop=True)
# # multiply
df_merged = pd.merge(df_production_all, df_contr_marg, on=['t', 'i'])
# Perform the multiplication
df_merged['y_new'] = df_merged['y'] * df_merged['dual']
df_merged = df_merged[['t', 'i', 'y_new']]
df_contr_marg_sum = df_merged.groupby('i')['y_new'].sum().reset_index()
df_production_res = m.solution['y'].sel(i = iRes).to_dataframe().reset_index()
df_price_res = m.constraints['load'].dual.to_dataframe().reset_index()
# multiply with df_price_res
df_merged_res = pd.merge(df_production_res, df_price_res, on='t')
df_merged_res['multiplied_value'] = df_merged_res['y'] * df_merged_res['dual']
df_merged_res = df_merged_res[['t', 'i', 'multiplied_value']]
df_contr_marg_res = df_merged_res.groupby('i')['multiplied_value'].sum().reset_index()
df_contr_marg_res['multiplied_value'] = df_contr_marg_res['multiplied_value'] * -dt
df_contr_marg_sum = pd.merge(df_contr_marg_sum, df_contr_marg_res, on='i', how='left')
df_contr_marg_sum['y_new'] = df_contr_marg_sum['multiplied_value'].combine_first(df_contr_marg_sum['y_new'])
df_contr_marg_sum = df_contr_marg_sum.drop(columns=['multiplied_value'])
df_contr_marg_sum['y'] = df_contr_marg_sum['y_new']*(-1)
# rearrange rows according to i
df_contr_marg_sum = df_contr_marg_sum.set_index('i').loc[i].reset_index()
# # # barplot
fig = px.bar(df_contr_marg_sum, y='i', x='y', orientation='h', title='Deckungsbeitrag [Mrd. €]', color='i', color_discrete_map=color_dict)
# fig.show()
with colb2:
fig
# %%
# #Add pie chart of total production per technology type in GWh(divide by 1000)
# df_production_sum = (df_production.groupby('i')['y'].sum() * dt / 1000 ).round(0).sort_values(ascending=False).reset_index()
# fig = px.pie(df_production_sum, names="i", values='y', title='Gesamtproduktion [GWh] als Kuchendiagramm',
# color='i', color_discrete_map=color_dict)
# with colb2:
# fig
# %%
# # %%
# df_h2_prod = m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index()
# fig = px.area(m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index(), y='y_h2', x='t', title='Produktion Wasserstoff [MWh_th]', color='i', color_discrete_map=color_dict)
# fig.update_traces(line=dict(width=0))
# fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
# with colb2:
# fig
# %%
# #add pie chart which shows new capacities
# #round number of new capacities
# df_new_capacities_rounded = m.solution['K'].round(0).to_dataframe()
# #drop all technologies with K<= 0
# df_new_capacities_rounded = df_new_capacities_rounded[df_new_capacities_rounded["K"] > 0].reset_index()
# total_k_sum = df_new_capacities_rounded["K"].sum()
# #df_new_capacities_rounded["percentage"] = df_new_capacities_rounded["K"].apply(lambda x: (x/total_k_sum)*100).abs().round(2)
# fig = px.pie(df_new_capacities_rounded, names='i', values='K', title='Neu installierte Kapazitäten [MW] als Kuchendiagramm',
# color='i', color_discrete_map=color_dict)
# with colb1:
# fig
# %%
((m.solution['y'] / eff_i) * co2_factor_i * dt).sum()
# %%
import pandas as pd
from io import BytesIO
#from pyxlsb import open_workbook as open_xlsb
import streamlit as st
import xlsxwriter
# %%
output = BytesIO()
# ##
def disaggregate_df(df):
if not "t" in list(df.columns):
return df
#df_repeated = df.iloc[idx_repeat,:].reset_index(drop = True).drop('t', axis = 1)
df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)
## %%
df_output = df.merge(df_t_all,on = 't').drop('t',axis = 1).rename({'t_all':'t'}, axis = 1)
# last column to first column
cols = list(df_output.columns)
cols = [cols[-1]] + cols[:-1]
df_output = df_output[cols]
return df_output.sort_values('t')
# Create a Pandas Excel writer using XlsxWriter as the engine
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
# Write each DataFrame to a different sheet
disaggregate_df(df_total_costs).to_excel(writer, sheet_name='Gesamtkosten', index=False)
disaggregate_df(df_CO2_price).to_excel(writer, sheet_name='CO2 Preis', index=False)
disaggregate_df(df_price).to_excel(writer, sheet_name='Preise', index=False)
# disaggregate_df(df_contr_marg).to_excel(writer, sheet_name='Deckungsbeiträge', index=False)
disaggregate_df(df_new_capacities).to_excel(writer, sheet_name='Kapazitäten', index=False)
disaggregate_df(df_production).to_excel(writer, sheet_name='Produktion', index=False)
disaggregate_df(df_charging).to_excel(writer, sheet_name='Ladevorgänge', index=False)
disaggregate_df(D_t.to_dataframe().reset_index()).to_excel(writer, sheet_name='Nachfrage', index=False)
disaggregate_df(df_curtailment).to_excel(writer, sheet_name='Abregelung', index=False)
# disaggregate_df(df_h2_prod).to_excel(writer, sheet_name='H2 produktion', index=False)
with col4:
st.download_button(
label="Download Excel Arbeitsmappe Ergebnisse",
data=output.getvalue(),
file_name="Arbeitsmappe_Ergebnisse.xlsx",
mime="application/vnd.ms-excel"
)
# %%
|