Spaces:
Sleeping
Sleeping
File size: 11,518 Bytes
fb8409d 926027b fb8409d 3ed1592 fb8409d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import base64
import random
import shutil
import time
from openai import OpenAI
import glob
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import zipfile
from PIL import Image
from sklearn.decomposition import PCA
from PIL import Image
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.svm import OneClassSVM
import numpy as np
import skimage
from skimage.feature import hog
from skimage.color import rgb2gray
from skimage import io
from sklearn.decomposition import PCA
from sklearn.svm import OneClassSVM
from sklearn.preprocessing import StandardScaler
import os
from tqdm import tqdm
import pickle
import joblib
import cv2
import streamlit as st
from streamlit_image_select import image_select
def cut_video(video_path):
# video_path = '/Users/ducky/Downloads/thief_1.mp4'
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frames_dir = "./data/video_frame"
if os.path.exists(frames_dir):
shutil.rmtree(frames_dir)
os.makedirs(frames_dir, exist_ok=True)
frame_count = 0
frame_times = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
timestamp_ms = (frame_count / fps) * 1000
minutes = int(timestamp_ms // 60000)
seconds = int((timestamp_ms % 60000) // 1000)
milliseconds = int(timestamp_ms % 1000)
time_formatted = f"{minutes:02}:{seconds:02}:{milliseconds:03}"
frame_times.append(time_formatted)
frame_file_path = os.path.join(frames_dir, f'frame_{frame_count:04d}.jpg')
cv2.imwrite(frame_file_path, frame)
frame_count += 1
cap.release()
return frames_dir, frame_times
def extract_hog_features(image_path):
"""
画像ファイルからHOG特徴量を抽出します。
:param image_path: 画像ファイルのパス
:return: HOG特徴量のNumPy配列
"""
# 画像を読み込む
img = io.imread(image_path)
img = img[:,:,:3]
# 画像をグレースケールに変換
gray_img = rgb2gray(img)
# HOG特徴量を抽出
features, _ = hog(gray_img, visualize=True, block_norm='L2-Hys')
return features
def prepare_features(image_paths):
"""
複数の画像からHOG特徴量を抽出し、特徴量の行列を作成します。
:param image_paths: 画像ファイルのパスのリスト
:return: 特徴量のNumPy配列
"""
progress_bar = st.progress(0)
status_text = st.empty()
features = []
for i, path in enumerate(tqdm(image_paths)):
features.append(extract_hog_features(path))
progress = int((i + 1) / len(image_paths) * 100)
progress_bar.progress(progress)
status_text.text(f"Processing image {i+1}/{len(image_paths)}: {path}")
progress_bar.empty()
status_text.text("Processing complete!")
status_text.empty()
return np.array(features)
def run_pca(features):
pca = PCA(n_components=4)
progress_bar = st.progress(0)
status_text = st.empty()
def simulate_pca_progress(progress_bar, status_text, total_steps=100):
for step in range(total_steps):
progress_bar.progress(int((step + 1) / total_steps * 100))
status_text.text(f"PCA Transformation Progress: {int((step + 1) / total_steps * 100)}%")
time.sleep(0.1)
simulate_pca_progress(progress_bar, status_text)
transformed_data = pca.fit_transform(features)
status_text.text("PCA Transformation Complete!")
progress_bar.empty()
status_text.empty()
return pca, transformed_data
def run_standard_scale(features):
scaler = StandardScaler()
progress_bar = st.progress(0)
status_text = st.empty()
def simulate_ss_progress(progress_bar, status_text, total_steps=100):
for step in range(total_steps):
progress_bar.progress(int((step + 1) / total_steps * 100))
status_text.text(f"StandardScaler Transformation Progress: {int((step + 1) / total_steps * 100)}%")
time.sleep(0.1)
simulate_ss_progress(progress_bar, status_text)
transformed_data = scaler.fit_transform(features)
status_text.text("StandardScaler Transformation Complete!")
progress_bar.empty()
status_text.empty()
return scaler, transformed_data
def run_OneClassSVM(z_train):
progress_bar = st.progress(0)
status_text = st.empty()
clf = svm.OneClassSVM(nu=0.2, kernel="rbf", gamma=0.001)
def simulate_fitting_progress(clf, z_train, total_steps=100):
for step in range(total_steps):
time.sleep(0.05)
progress_bar.progress(step + 1)
status_text.text(f"Fitting model... {step + 1}% complete")
clf.fit(z_train)
progress_bar.empty()
status_text.empty()
simulate_fitting_progress(clf, z_train)
return clf
def predict_with_progress(clf, features_array):
progress_bar = st.progress(0)
status_text = st.empty()
predictions = np.zeros(features_array.shape[0])
for i in range(features_array.shape[0]):
predictions[i] = clf.predict(features_array[i].reshape(1, -1))
# predictions[i] = clf.decision_function(features_array[i].reshape(1, -1))
progress = int((i + 1) / features_array.shape[0] * 100)
progress_bar.progress(progress)
status_text.text(f"Predicting... {progress}% complete")
progress_bar.empty()
status_text.empty()
return predictions
def prepare_all_displayed_anomalies(frames_dir, predictions):
anomaly_indices = [index for index, value in enumerate(predictions) if value == -1]
anomaly_indices.sort()
frames = os.listdir(frames_dir)
frames.sort()
anomaly_folder = "./data/anomaly"
os.makedirs(anomaly_folder, exist_ok=True)
anomaly_paths = []
frame_number = 0
anomaly_count = 0
for frame in frames:
frame_path = os.path.join(frames_dir, frame)
if frame_number == anomaly_indices[anomaly_count]:
anomaly_frame_path = os.path.join(anomaly_folder, f'frame_{frame_number:04d}.jpg')
shutil.copy(frame_path, anomaly_frame_path)
anomaly_paths.append(anomaly_frame_path)
anomaly_count += 1
if anomaly_count >= len(anomaly_indices): break
frame_number += 1
return anomaly_paths
def prepare_3_displayed_anomalies(frames_dir, predictions, frame_times):
anomaly_frames = [index for index, value in enumerate(predictions) if value == -1]
indices = random.sample(range(len(anomaly_frames)), 3)
anomaly_frames = [anomaly_frames[i] for i in indices]
anomaly_frames.sort()
frames = os.listdir(frames_dir)
frames.sort()
anomaly_folder = "./data/anomaly"
os.makedirs(anomaly_folder, exist_ok=True)
anomaly_paths = []
frame_number = 0
anomaly_count = 0
for frame in frames:
frame_path = os.path.join(frames_dir, frame)
if frame_number == anomaly_frames[anomaly_count]:
anomaly_frame_path = os.path.join(anomaly_folder, f'frame_{frame_number:04d}.jpg')
shutil.copy(frame_path, anomaly_frame_path)
anomaly_paths.append([anomaly_frame_path, frame_times[frame_number]])
anomaly_count += 1
if anomaly_count >= len(anomaly_frames): break
frame_number += 1
return anomaly_paths
def OneClassSvm_anomaly_detection(image_paths):
features = prepare_features(image_paths)
_, features_scaled = run_standard_scale(features)
_, z_train = run_pca(features_scaled)
clf = run_OneClassSVM(z_train)
return clf, z_train
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def get_response(model, client, image_path):
base64_image = encode_image(image_path)
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with task!"},
{"role": "user", "content": [
{"type": "text", "text": "この画像の中の人物が行っている活動を説明してください"},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{base64_image}"}
}
]}
],
temperature=0.0,
)
return response.choices[0].message.content
def VLM_anomaly_detection(anomaly_paths):
model = "gpt-4o"
API_KEY = os.getenv("MY_API_KEY")
client = OpenAI(api_key=API_KEY)
progress_bar = st.progress(0)
status_text = st.empty()
st.session_state.responses = []
anomaly_paths = [path[0] for path in anomaly_paths]
for i, anomaly_path in enumerate(tqdm(anomaly_paths)):
progress = int((i + 1) / len(anomaly_paths) * 100)
progress_bar.progress(progress)
status_text.text(f"Running VLM {i+1}/{len(anomaly_paths)}")
response = get_response(model, client, anomaly_path)
st.session_state.responses.append(response)
progress_bar.empty()
status_text.text("Processing complete!")
status_text.empty()
def main():
if 'responses' not in st.session_state:
st.session_state.responses = []
if 'display_anomalies' not in st.session_state:
st.session_state.display_anomalies = []
with st.sidebar:
st.image("logo.png")
uploaded_video = st.file_uploader("Upload video", type=["mp4", "mov", "avi"])
os.makedirs("./data", exist_ok=True)
if uploaded_video is not None:
video_file_path = "./data/uploaded_video.mp4"
with open(video_file_path, "wb") as f:
f.write(uploaded_video.read())
st.video(uploaded_video, start_time=0)
for _ in range(3): st.write(" ")
st.write("サイドバーより動画としてアップロードし推論ボタンをクリック")
if st.button("推論開始"):
with st.spinner("データを学習中、少々お待ちください..."):
video_file_path = "./data/uploaded_video.mp4"
frames_dir, frame_times = cut_video(video_file_path)
image_paths = [os.path.join(frames_dir, image_path) for image_path in os.listdir(frames_dir)]
clf, z_train = OneClassSvm_anomaly_detection(image_paths)
with st.spinner("学習が完了しました。異常検知を行っています..."):
predictions = predict_with_progress(clf, z_train)
st.session_state.display_anomalies = []
st.session_state.display_anomalies = prepare_3_displayed_anomalies(frames_dir, predictions, frame_times)
VLM_anomaly_detection(st.session_state.display_anomalies)
if st.session_state.display_anomalies:
anomaly_paths = [path[0] for path in st.session_state.display_anomalies]
anomaly_time = [str(path[1]) for path in st.session_state.display_anomalies]
selected = image_select(
label = "「異常」である可能性があるフレーム",
images = anomaly_paths,
captions = anomaly_time,
key = "image_select"
)
selected_img = str(selected)[:100]
idx = anomaly_paths.index(selected_img)
st.info(st.session_state.responses[idx])
if __name__ == "__main__":
main() |