Spaces:
Running
on
L40S
Running
on
L40S
from typing import List | |
import PIL.Image | |
import torch | |
from PIL import Image | |
from ...configuration_utils import ConfigMixin | |
from ...models.modeling_utils import ModelMixin | |
from ...utils import PIL_INTERPOLATION | |
class IFWatermarker(ModelMixin, ConfigMixin): | |
def __init__(self): | |
super().__init__() | |
self.register_buffer("watermark_image", torch.zeros((62, 62, 4))) | |
self.watermark_image_as_pil = None | |
def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None): | |
# copied from https://github.com/deep-floyd/IF/blob/b77482e36ca2031cb94dbca1001fc1e6400bf4ab/deepfloyd_if/modules/base.py#L287 | |
h = images[0].height | |
w = images[0].width | |
sample_size = sample_size or h | |
coef = min(h / sample_size, w / sample_size) | |
img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w) | |
S1, S2 = 1024**2, img_w * img_h | |
K = (S2 / S1) ** 0.5 | |
wm_size, wm_x, wm_y = int(K * 62), img_w - int(14 * K), img_h - int(14 * K) | |
if self.watermark_image_as_pil is None: | |
watermark_image = self.watermark_image.to(torch.uint8).cpu().numpy() | |
watermark_image = Image.fromarray(watermark_image, mode="RGBA") | |
self.watermark_image_as_pil = watermark_image | |
wm_img = self.watermark_image_as_pil.resize( | |
(wm_size, wm_size), PIL_INTERPOLATION["bicubic"], reducing_gap=None | |
) | |
for pil_img in images: | |
pil_img.paste(wm_img, box=(wm_x - wm_size, wm_y - wm_size, wm_x, wm_y), mask=wm_img.split()[-1]) | |
return images | |