File size: 3,574 Bytes
a25c1ff c49c1a9 9c95f36 c49c1a9 9c95f36 c49c1a9 c4db5c2 c49c1a9 ace2f35 563477e c49c1a9 563477e 4e3899c 1742d0f ace2f35 563477e ace2f35 563477e ace2f35 549684b 4e3899c 549684b 4e3899c 549684b 4e3899c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
import os
from pathlib import Path
import argparse
from huggingface_hub import snapshot_download
# repo_name = "TheBloke/Mistral-7B-v0.1-GGUF"
# model_file = "mistral-7b-v0.1.Q6_K.gguf"
#repo_name = 'HumanityFTW/so_rude'
#model_file = "mistral-comedy-2.0-ckpt-600.Q6_K.gguf"
repo_name = 'TheBloke/OpenHermes-2.5-Mistral-7B-GGUF'
model_file = "openhermes-2.5-mistral-7b.Q4_K_M.gguf"
print('Fetching model:', repo_name, model_file)
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_file)
print('Done fetching model:')
DEFAULT_MODEL_PATH = model_file
from llama_cpp import Llama
llm = Llama(model_path=model_file, model_type="mistral")
isFirstRun = True
context = ""
history = [] # Initialize history
initContext = """<|im_start|>You are playing the role of an aggressive patient called Barry Lawson. Barry has been waiting for hours at the hospital with severe pain in his chest and hasn't been seen yet. You are incredibly frustrated and angry that things are taking so long, you will only calm down if your concerns are addressed. Waiting will only make you more angry and aggressive towards the staff. At any moment you could break into a RAGE! Make sure you don't censor swear words. Make sure to explain your emotional state and thinking before responding, for example, Barry: (tired of waiting and very angry) What the fuck do I have to do around here to get some treatment!"""
feedback_file = Path("/content/datalog.json")
def predict(input, chatbot, max_length, top_p, temperature, history):
chatbot.append((input, ""))
response = ""
history.append(input)
for output in llm(input, stream=True, temperature=temperature, top_p=top_p, max_tokens=max_length, ):
piece = output['choices'][0]['text']
response += piece
chatbot[-1] = (chatbot[-1][0], response)
yield chatbot, history
history.append(response)
yield chatbot, history
def reset_user_input():
return gr.update(value="")
def reset_state():
return [], []
def AIPatient(message):
global isFirstRun, history,context
if isFirstRun:
context = initContext
isFirstRun = False
#else:
#for turn in history:
# context += f"\n<|im_start|> Nurse: {turn[0]}\n<|im_start|> Barry: {turn[1]}"
context += """
<|im_start|>nurse
Nurse: """+message+"""
<|im_start|>barry
Barry:
"""
response = ""
# Here, you should add the code to generate the response using your model
# For example:
while(len(response) < 1):
print("here")
output = llm(context, max_tokens=400, stop=["Nurse:"], echo=False)
response = output["choices"][0]["text"]
response = response.strip()
context += response
print (context)
history.append((message,response))
return history
with gr.Blocks() as demo:
gr.Markdown("# AI Patient Chatbot")
with gr.Group():
with gr.Tab("Patient Chatbot"):
chatbot = gr.Chatbot()
message = gr.Textbox(label="Enter your message to Barry", placeholder="Type here...", lines=2)
send_message = gr.Button("Submit")
send_message.click(AIPatient, inputs=[message], outputs=[chatbot])
save_chatlog = gr.Button("Save Chatlog")
#send_message.click(SaveChatlog, inputs=[message], outputs=[chatbot])
#message.submit(AIPatient, inputs=[message], outputs=[chatbot])
demo.launch(debug=True,share=False,inbrowser=True)
|