File size: 11,641 Bytes
784a0f4
a4f23a1
 
 
784a0f4
 
a4f23a1
784a0f4
a4f23a1
784a0f4
 
a4f23a1
784a0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f23a1
784a0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f23a1
784a0f4
a4f23a1
784a0f4
a4f23a1
 
 
784a0f4
a4f23a1
 
 
 
784a0f4
a4f23a1
 
 
784a0f4
 
 
 
a4f23a1
 
784a0f4
a4f23a1
 
784a0f4
 
 
 
 
 
 
 
 
a4f23a1
784a0f4
 
a4f23a1
784a0f4
a4f23a1
784a0f4
a4f23a1
784a0f4
 
 
a4f23a1
784a0f4
 
 
 
 
 
 
 
 
 
a4f23a1
784a0f4
 
a4f23a1
784a0f4
a4f23a1
 
784a0f4
a4f23a1
 
 
 
 
784a0f4
 
a4f23a1
 
 
 
 
784a0f4
 
 
 
 
a4f23a1
 
 
784a0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f23a1
 
784a0f4
 
 
 
 
 
 
 
 
 
a4f23a1
 
 
784a0f4
 
 
 
 
 
 
 
 
 
 
 
 
a4f23a1
784a0f4
 
 
 
 
a4f23a1
 
784a0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f23a1
 
784a0f4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from huggingface_hub import InferenceClient
import gradio as gr
import json
from datetime import datetime
import os
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from google.oauth2 import service_account
from googleapiclient.http import MediaFileUpload
from pathlib import Path
import argparse
from huggingface_hub import snapshot_download
import random 
import string
import re
from llama_cpp import Llama


repo_name = 'TheBloke/OpenHermes-2.5-Mistral-7B-GGUF'
model_file = "openhermes-2.5-mistral-7b.Q4_K_M.gguf"
SCOPES = ['https://www.googleapis.com/auth/drive']
SERVICE_ACCOUNT_FILE = '/home/user/app/service_account_creds.json'
folder_id = '1Hjbu7FmuVs0Yz8y_veo6SzY_2tc48OWt'

initContext = """<|im_start|>You are playing the role of an aggressive patient called Barry Lawson. Barry has been waiting for hours at the hospital with severe pain in his chest and hasn't been seen yet. You are incredibly frustrated and angry that things are taking so long, you will only calm down if your concerns are addressed. Waiting will only make you more angry and aggressive towards the staff. At any moment you could break into a RAGE! Make sure you don't censor swear words. Make sure to explain your emotional state and thinking before responding, for example, Barry: (tired of waiting and very angry) What the fuck do I have to do around here to get some treatment!"""
unique_id = ""
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")


def load_model():
    llm = Llama(model_path=model_file, model_type="mistral",n_gpu_layers=-1,n_ctx = 2048)
    return llm

def generate_unique_id():
    # Generate a random sequence of 3 letters and 3 digits
    letters = ''.join(random.choices(string.ascii_letters, k=3))
    digits = ''.join(random.choices(string.digits, k=3))
    unique_id = letters + digits
    return unique_id
    
print('Fetching model:', repo_name, model_file)
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_file)
print('Done fetching model:')


class ChatbotAPP:
    def __init__(self,model,service_account_file,scopes,folder_id,unique_id,initContext):
        self.llm = model
        self.service_account_file = service_account_file
        self.scopes = scopes
        self.folder_id = folder_id
        self.unique_id = unique_id
        self.chat_history = []
        self.chat_log_history = []
        self.isFirstRun = True
        self.initContext = initContext
        self.context = ""
        self.agreed = False
        self.service = self.get_drive_service()
        self.app = self.create_app()
        self.chat_log_name = ""

    def get_drive_service(self):
        credentials = service_account.Credentials.from_service_account_file(
            self.service_account_file, scopes=self.scopes)
        self.service = build('drive', 'v3', credentials=credentials)
        print("Google Service Created")
        return self.service

    def search_file(self):
        #Search for a file by name in the specified Google Drive folder.
        query = f"name = '{self.chat_log_name}' and '{self.folder_id}' in parents and trashed = false"
        response = self.service.files().list(q=query, spaces='drive', fields='files(id, name)').execute()
        files = response.get('files', [])
        if not files:
            print(f"Chat log {self.chat_log_name} does not exist")
        else:
            print(f"Chat log {self.chat_log_name} exist")
        return files
    
    def strip_text(self,text):
        # Pattern to match text inside parentheses or angle brackets and any text following angle brackets
        pattern = r"\(.*?\)|<.*?>.*"
        
        # Use re.sub() to replace the matched text with an empty string
        cleaned_text = re.sub(pattern, "", text)
        
        return cleaned_text
    
    def upload_to_google_drive(self):
        existing_files = search_file()
        print(existing_files)
        
        data = {
                #"name": Name,
                #"occupation": Occupation,
                #"years of experience": YearsOfExp,
                #"ethnicity": Ethnicity,
                #"gender": Gender,
                #"age": Age,
                "Unique ID": self.unique_id,
                "chat_history": self.chat_log_history
                }
        
        with open(self.chat_log_name, "w") as log_file:
                json.dump(data, log_file, indent=4)
    
        if not existing_files:
            # If the file does not exist, upload it
            file_metadata = {
                'name': self.chat_log_name,
                'parents': [self.folder_id],'mimeType': 'application/json'
            }
            media = MediaFileUpload(self.chat_log_name, mimetype='application/json')
            file = self.service.files().create(body=file_metadata, media_body=media, fields='id').execute()
            print(f"Uploaded new file with ID: {file.get('id')}")
        else:
            print(f"File '{self.chat_log_name}' already exists.")
            # Example: Update the file content
            file_id = existing_files[0]['id']
            media = MediaFileUpload(self.chat_log_name, mimetype='application/json')
            updated_file = self.service.files().update(fileId=file_id, media_body=media).execute()
            print(f"Updated existing file with ID: {updated_file.get('id')}")

    def generate(self,prompt, history):
            
        #if not len(Name) == 0 and not len(Occupation) == 0 and not len(Ethnicity) == 0 and not len(Gender) == 0 and not len(Age) == 0 and not len(YearsOfExp):
        if self.agreed:
            firstmsg =""
            if self.isFirstRun:
                self.context = self.initContext
                self.isFirstRun = False
                firstmsg = prompt
                
        
            self.context += """
                      <|im_start|>nurse
                      Nurse:"""+prompt+"""
                      <|im_start|>barry
                      Barry:
                      """
        
            response = ""
            
            while(len(response) < 1):
                output = self.llm(context, max_tokens=400, stop=["Nurse:"], echo=False)
                response = output["choices"][0]["text"]
                response = response.strip()
                #yield response
        
        
          #  for output in llm(input, stream=True, max_tokens=100, ):
            #    piece = output['choices'][0]['text']
           #     response += piece
           #     chatbot[-1] = (chatbot[-1][0], response)
        
           #     yield  response
                
            cleaned_response = self.strip_text(response)
        
            self.chat_history.append((prompt,cleaned_response))
            if  not self.isFirstRun:
                self.chat_log_history.append({"user": prompt, "bot": cleaned_response})
                self.upload_to_google_drive()
                
            else:
                self.chat_log_history.append({"user": firstmsg, "bot": cleaned_response})
            
            context += response
            
            print (context)
            return self.chat_history
            
        else:
            output = "Did you forget to Agree to the Terms and Conditions?"
            self.chat_history.append((prompt,output))
            return self.chat_history


    def start_chat_button_fn(self,agree_status):
        
        if agree_status: 
            self.agreed = agree_status
            self.chat_log_name =  f'chat_log_for_{self.unique_id}_{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.json'
            return f"You can start chatting now"    
        else:
            return "You must agree to the terms and conditions to proceed"
        
    def reset_chat_interface(self):
        self.chat_history = []
        self.chat_log_history = []
        self.isFirstRun = True
        return "Chat has been reset."
    
    def reset_name_interface(self):
        Name = ""
        Occupation = ""
        YearsOfExp = ""
        Ethnicity = ""
        Gender = ""
        Age = ""
        chat_log_name = ""
        return "User info has been reset."
    
    def reset_all(self):

        message1 = reset_chat_interface()
        #message2 = reset_name_interface()
        message3 = load_model()
        self.unique_id = generate_unique_id()
        return f"All Chat components have been rest.  Uniqe ID for this session is, {self.unique_id}. Please note this down.",self.unique_id


    def create_app(self):
        with gr.Blocks() as app:
            gr.Markdown("# ECU-IVADE: Conversational AI Model for Aggressive Patient Behavior (Beta Testing)")
            unique_id_display = gr.Textbox(value=unique_id, label="Session Unique ID", interactive=False,show_copy_button = True)
            
            with gr.Tab("Terms and Conditions"):
                #name = gr.Textbox(label="Name")
                #occupation = gr.Textbox(label="Occupation")
                #yearsofexp = gr.Textbox(label="Years of Experience")
                #ethnicity = gr.Textbox(label="Ethnicity")
                #gender = gr.Dropdown(choices=["Male", "Female", "Other", "Prefer Not To Say"], label="Gender")
                #age = gr.Textbox(label="Age")
                #submit_info = gr.Button("Submit")
                gr.Markdown("## Terms and Conditions")
                gr.Markdown("""
            Before using our chatbot, please read the following terms and conditions carefully:
            
            - **Data Collection**: Our chatbot collects chat logs for the purpose of improving our services and user experience.
            - **Privacy**: We ensure the confidentiality and security of your data, in line with our privacy policy.
            - **Survey**: At the end of the chat session, you will be asked to participate in a short survey to gather feedback about your experience.
            - **Consent**: By checking the box below and initiating the chat, you agree to these terms and the collection of chat logs, and consent to take part in the survey upon completing your session.
            
            Please check the box below to acknowledge your agreement and proceed.
            """)
                agree_status = gr.Checkbox(label="I have read and understand the terms and conditions.")
                status_label = gr.Markdown()
                start_chat_button = gr.Button("Start Chat with Chatlog")
                #submit_info.click(submit_user_info, inputs=[name, occupation, yearsofexp, ethnicity, gender, age], outputs=[status_textbox])
                start_chat_button.click(start_chat_button_fn, inputs=[agree_status], outputs=[status_label])
                #status_textbox = gr.Textbox(interactive = False)
                
            with gr.Tab("Chat Bot"):
                chatbot = gr.Chatbot()
                msg = gr.Textbox(label="Type your message")
                send = gr.Button("Send")
                clear = gr.Button("Clear Chat")
                send.click(generate, inputs=[msg], outputs=chatbot)
                clear.click(lambda: chatbot.clear(), inputs=[], outputs=chatbot)
            
            with gr.Tab("Reset"):
                reset_button = gr.Button("Reset ChatBot Instance")
                reset_output = gr.Textbox(label="Reset Output", interactive=False)
                reset_button.click(reset_all, inputs=[], outputs=[reset_output,unique_id_display])
        return app

llm = load_model()
chatbot_app = ChatbotApp(llm,SERVICE_ACCOUNT_FILE,SCOPES,folder_id,unique_id,initContext)
app = chatbot_app.create_app()
app.launch(debug=True)