File size: 16,761 Bytes
c5e8b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import sys
sys.path.append("..")

from dataclasses import dataclass
from typing import Dict, Optional, Union


import torch
import torch.nn.functional as F
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin


@dataclass
class PriorTransformerOutput(BaseOutput):
    """
    The output of [`PriorTransformer`].

    Args:
        predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
            The predicted CLIP image embedding conditioned on the CLIP text embedding input.
    """

    predicted_image_embedding: torch.FloatTensor


class PriorTransformer(ModelMixin, ConfigMixin):
    """
    A Prior Transformer model.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
        embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
        num_embeddings (`int`, *optional*, defaults to 77):
            The number of embeddings of the model input `hidden_states`
        additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
            projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
            additional_embeddings`.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
            The activation function to use to create timestep embeddings.
        norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
            passing to Transformer blocks. Set it to `None` if normalization is not needed.
        embedding_proj_norm_type (`str`, *optional*, defaults to None):
            The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
            needed.
        encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
            The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
            `encoder_hidden_states` is `None`.
        added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
            Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
            product between the text embedding and image embedding as proposed in the unclip paper
            https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended.
        time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
            If None, will be set to `num_attention_heads * attention_head_dim`
        embedding_proj_dim (`int`, *optional*, default to None):
            The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
        clip_embed_dim (`int`, *optional*, default to None):
            The dimension of the output. If None, will be set to `embedding_dim`.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 32,
        attention_head_dim: int = 64,
        num_layers: int = 20,
        embedding_dim: int = 768,
        num_embeddings=77,
        additional_embeddings=3,  # as we have remvoed the time embedding
        dropout: float = 0.0,
        # time_embed_act_fn: str = "silu",
        norm_in_type: Optional[str] = None,  # layer
        embedding_proj_norm_type: Optional[str] = None,  # layer
        encoder_hid_proj_type: Optional[str] = "linear",  # linear
        added_emb_type: Optional[str] = "prd",  # prd
        # time_embed_dim: Optional[int] = None,
        embedding_proj_dim: Optional[int] = None,
        clip_embed_dim: Optional[int] = None,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.additional_embeddings = additional_embeddings

        # time_embed_dim = time_embed_dim or inner_dim
        embedding_proj_dim = embedding_proj_dim or embedding_dim
        clip_embed_dim = clip_embed_dim or embedding_dim

        # self.time_proj = Timesteps(inner_dim, True, 0)
        # self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)

        self.proj_in = nn.Linear(embedding_dim, inner_dim)

        if embedding_proj_norm_type is None:
            self.embedding_proj_norm = None
        elif embedding_proj_norm_type == "layer":
            self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
        else:
            raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")

        self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)

        if encoder_hid_proj_type is None:
            self.encoder_hidden_states_proj = None
        elif encoder_hid_proj_type == "linear":
            self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
        else:
            raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")

        self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))

        if added_emb_type == "prd":
            self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
        elif added_emb_type is None:
            self.prd_embedding = None
        else:
            raise ValueError(
                f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
            )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    activation_fn="gelu",
                    attention_bias=True,
                )
                for d in range(num_layers)
            ]
        )

        if norm_in_type == "layer":
            self.norm_in = nn.LayerNorm(inner_dim)
        elif norm_in_type is None:
            self.norm_in = None
        else:
            raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")

        self.norm_out = nn.LayerNorm(inner_dim)

        self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)

        causal_attention_mask = torch.full(
            [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
        )
        causal_attention_mask.triu_(1)
        causal_attention_mask = causal_attention_mask[None, ...]
        self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)

        self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
        self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))

    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

    def forward(
        self,
        hidden_states,
        # timestep: Union[torch.Tensor, float, int],
        proj_embedding: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
        return_dict: bool = True,
    ):
        """
        The [`PriorTransformer`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
                The currently predicted image embeddings.
            timestep (`torch.LongTensor`):
                Current denoising step.
            proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
                Projected embedding vector the denoising process is conditioned on.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
                Hidden states of the text embeddings the denoising process is conditioned on.
            attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
                Text mask for the text embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
                tuple.

        Returns:
            [`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
                If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
        """
        batch_size = hidden_states.shape[0]

        # timesteps = timestep
        # if not torch.is_tensor(timesteps):
        #     timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
        # elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
        #     timesteps = timesteps[None].to(hidden_states.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        # timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)

        # timesteps_projected = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might be fp16, so we need to cast here.
        # timesteps_projected = timesteps_projected.to(dtype=self.dtype)
        # time_embeddings = self.time_embedding(timesteps_projected)

        if self.embedding_proj_norm is not None:
            proj_embedding = self.embedding_proj_norm(proj_embedding)

        proj_embeddings = self.embedding_proj(proj_embedding)
        if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
            encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
        elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
            raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")

        hidden_states = self.proj_in(hidden_states)

        positional_embeddings = self.positional_embedding.to(hidden_states.dtype)

        additional_embeds = []
        additional_embeddings_len = 0

        if encoder_hidden_states is not None:
            additional_embeds.append(encoder_hidden_states)
            additional_embeddings_len += encoder_hidden_states.shape[1]

        if len(proj_embeddings.shape) == 2:
            proj_embeddings = proj_embeddings[:, None, :]

        if len(hidden_states.shape) == 2:
            hidden_states = hidden_states[:, None, :]

        additional_embeds = additional_embeds + [
            proj_embeddings,
            # time_embeddings[:, None, :],
            hidden_states,
        ]

        if self.prd_embedding is not None:
            prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
            additional_embeds.append(prd_embedding)

        hidden_states = torch.cat(
            additional_embeds,
            dim=1,
        )

        # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
        additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
        if positional_embeddings.shape[1] < hidden_states.shape[1]:
            positional_embeddings = F.pad(
                positional_embeddings,
                (
                    0,
                    0,
                    additional_embeddings_len,
                    self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
                ),
                value=0.0,
            )

        hidden_states = hidden_states + positional_embeddings

        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
            attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
            attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0)

        if self.norm_in is not None:
            hidden_states = self.norm_in(hidden_states)

        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, attention_mask=attention_mask)

        hidden_states = self.norm_out(hidden_states)

        if self.prd_embedding is not None:
            hidden_states = hidden_states[:, -1]
        else:
            hidden_states = hidden_states[:, additional_embeddings_len:]

        predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)

        if not return_dict:
            return (predicted_image_embedding,)

        return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)

    def post_process_latents(self, prior_latents):
        prior_latents = (prior_latents * self.clip_std) + self.clip_mean
        return prior_latents